Skip to main content
Log in

Feather Waste Biorefinery using Chryseobacterium sp. A9.9 Adapted to Feathers as its Sole Carbon and Nitrogen Source

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Feathers represent a natural source of proteins packed in a highly stable structure. Because of their recalcitrance, feathers can take considerable time to naturally decompose. To help avoid their accumulation in the environment, feather waste needs to be sustainably handled, e.g., by converting them into more valuable products through microbial processes. Here, we screened bacteria from the rhizosphere of Mimosa pudica for their ability to degrade feathers and use them as their substrate. Three candidates produced proteases that were active in a wide range of temperature (30–70 °C) and pH (5–11). One of the isolates, identified as Chryseobacterium sp. A9.9, effectively degraded feathers, yielding 45% mass shrinkage in 24 h. Laboratory adaptation of Chryseobacterium sp. A9.9 using feathers as its sole carbon and nitrogen source for 30 passages improved its ability to degrade feathers and to produce proteases with higher activity, yielding higher total protein content. In addition, because Chryseobacterium sp. A9.9 produces flexirubin, a yellow pigment with potential biomedical applications, the system may add value to the bioconversion process. The use of microorganisms from local resources and simple methods to improve their performance to degrade recalcitrant wastes such as feathers provides an attractive approach to biomass valorization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. FAO: Gateway to poultry production and products (2021). http://www.fao.org/poultry-production-products/production/poultryspecies/chickens/en/. Accessed 24 Aug 2021

  2. Vidmar, B., Vodovnik, M.: Microbial keratinases: enzymes with promising biotechnological applications. Food Technol. Biotechnol. 56, 312–328 (2018)

    Article  Google Scholar 

  3. Ferraro, V., Anton, M., Santé-Lhoutellier, V.: The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: functionality, bioactivity and trends of application. Trends Food Sci. Technol. 51, 65–75 (2016)

    Article  Google Scholar 

  4. Nnolim, N.E., Udenigwe, C.C., Okoh, A.I., Nwodo, U.U.: Microbial keratinase: next generation green catalyst and prospective applications. Front. Microbiol. 11, 3280 (2020)

    Article  Google Scholar 

  5. Kreplak, L., Doucet, J., Dumas, P., Briki, F.: New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys. J. 87, 640–647 (2004)

    Article  Google Scholar 

  6. Parry, D.A.D., North, A.C.T.: Hard α-keratin intermediate filament chains: substructure of the N-and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. J. Struct. Bol. 122, 67–75 (1998)

    Article  Google Scholar 

  7. Brandelli, A.: Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess. Technol. 1, 105–116 (2008)

    Article  Google Scholar 

  8. Lin, X., Lee, C.-G., Casale, E.S., Shih, J.C.H.: Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Microbiol. 58, 3271–3275 (1992)

    Article  Google Scholar 

  9. Kim, J., Lim, W., Suh, H.: Feather-degrading Bacillus species from poultry waste. Process. Biochem. 37, 287–291 (2001)

    Article  Google Scholar 

  10. Friedrich, A.B., Antranikian, G.: Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62, 2875–2882 (1996)

    Article  Google Scholar 

  11. Nam, G.-W., Lee, D.-W., Lee, H.-S., Lee, N.-J., Kim, B.-C., Choe, E.-A., Hwang, J.-K., Suhartono, M.T., Pyun, Y.-R.: Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178, 538–547 (2002)

    Article  Google Scholar 

  12. Bernal, C., Cairo, J., Coello, N.: Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzym. Microb. Technol. 38, 49–54 (2006)

    Article  Google Scholar 

  13. Sangali, S., Brandelli, A.: Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 89, 735–743 (2000)

    Article  Google Scholar 

  14. De Toni, C.H., Richter, M.F., Chagas, J.R., Henriques, J.A.P., Termignoni, C.: Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain. Can. J. Microbiol. 48, 342–348 (2002)

    Article  Google Scholar 

  15. Sharma, R., Devi, S.: Versatility and commercial status of microbial keratinases: a review. Rev. Environ. Sci. Bio/Technology 17, 19–45 (2018). https://doi.org/10.1007/s11157-017-9454-x

    Article  Google Scholar 

  16. Cupp-Enyard, C.: Sigma’s non-specific protease activity assay-casein as a substrate. J. Vis. Exp. (2008). https://doi.org/10.3791/899

    Article  Google Scholar 

  17. Venil, C.K., Zakaria, Z.A., Usha, R., Ahmad, W.A.: Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal. Agric. Biotechnol. 3, 103–107 (2014)

    Article  Google Scholar 

  18. Baltierra-Trejo, E., Márquez-Benavides, L., Sánchez-Yáñez, J.M.: Inconsistencies and ambiguities in calculating enzyme activity: the case of laccase. J. Microbiol. Methods 119, 126–131 (2015)

    Article  Google Scholar 

  19. de Oliveira, C.T., Pellenz, L., Pereira, J.Q., Brandelli, A., Daroit, D.J.: Screening of bacteria for protease production and feather degradation. Waste Biomass Valoriz. 7, 447–453 (2016)

    Article  Google Scholar 

  20. Bokveld, A., Nnolim, N.E., Digban, T.O., Okoh, A.I., Nwodo, U.U.: Chryseobacterium aquifrigidense keratinase liberated essential and nonessential amino acids from chicken feather degradation. Environ. Technol. (2021). https://doi.org/10.1080/09593330.2021.1969597

    Article  Google Scholar 

  21. Hendrick, Q., Nnolim, N.E., Nwodo, U.U.: Chryseobacterium cucumeris FHN1 keratinolytic enzyme valorized chicken feathers to amino acids with polar, anionic and non-polar imino side chain characteristics. Biocatal. Agric. Biotechnol. 35, 102109 (2021). https://doi.org/10.1016/j.bcab.2021.102109

    Article  Google Scholar 

  22. Bockle, B., Muller, R.: Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl. Environ. Microbiol. 63, 790–792 (1997)

    Article  Google Scholar 

  23. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., Al-Zarban, S.: A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66, 1–11 (1998)

    Article  Google Scholar 

  24. Ramnani, P., Singh, R., Gupta, R.: Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51, 191–196 (2005)

    Article  Google Scholar 

  25. Brown, S., Muhamad, N., Pedley, K.C., Simcock, D.C.: The kinetics of enzyme mixtures. Mol. Biol. Res. Commun. 3, 21 (2014)

    Google Scholar 

  26. Hassan, M.A., Abol-Fotouh, D., Omer, A.M., Tamer, T.M., Abbas, E.: Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: a review. Int. J. Biol. Macromol. 154, 567–583 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.116

    Article  Google Scholar 

  27. Van den Bergh, B., Swings, T., Fauvart, M., Michiels, J.: Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol. Mol. Biol. Rev. 82, e00008-e18 (2018)

    Google Scholar 

  28. Riffel, A., Daroit, D.J., Brandelli, A.: Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. N Biotechnol. 28, 153–157 (2011)

    Article  Google Scholar 

  29. Nyström, T.: Stationary-phase physiology. Annu. Rev. Microbiol. 58, 161–181 (2004)

    Article  Google Scholar 

  30. Pletnev, P., Osterman, I., Sergiev, P., Bogdanov, A., Dontsova, O.: Survival guide: Escherichia coli in the stationary phase. Acta Naturae. 7(4), 22–33 (2015)

    Article  Google Scholar 

  31. Le Rouzic, E.: Contamination-pipetting: relative efficiency of filter tips compared to Microman® positive displacement pipette. Nat. Methods 3, III–IV (2006)

    Article  Google Scholar 

  32. De Oliveira-Garcia, D., Dall’Agnol, M., Rosales, M., Azzuz, A.C.G.S., Alcántara, N., Martinez, M.B., Girón, J.A.: Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell. Microbiol. 5, 625–636 (2003)

    Article  Google Scholar 

  33. Gross, M., Cramton, S.E., Götz, F., Peschel, A.: Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun. 69, 3423–3426 (2001)

    Article  Google Scholar 

  34. Zheng, S., Bawazir, M., Dhall, A., Kim, H.-E., He, L., Heo, J., Hwang, G.: Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 9, 82 (2021)

    Google Scholar 

  35. Gresham, D., Dunham, M.J.: The enduring utility of continuous culturing in experimental evolution. Genomics 104, 399–405 (2014)

    Article  Google Scholar 

  36. Goddard, M.R., Bradford, M.A.: The adaptive response of a natural microbial population to carbon- and nitrogen‐limitation. Ecol. Lett. 6, 594–598 (2003)

    Article  Google Scholar 

  37. Kohlstedt, M., Sappa, P.K., Meyer, H., Maaß, S., Zaprasis, A., Hoffmann, T., Becker, J., Steil, L., Hecker, M., van Dijl, J.M.: Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ. Microbiol. 16, 1898–1917 (2014)

    Article  Google Scholar 

  38. Manzoni, S., Chakrawal, A., Spohn, M., Lindahl, B.D.: Modeling microbial adaptations to nutrient limitation during litter decomposition. Front. For. Glob. Chang. (2021). https://doi.org/10.3389/ffgc.2021.686945

    Article  Google Scholar 

  39. Jiménez, M.E.P., Pinilla, C.M.B., Rodrigues, E., Brandelli, A.: Extraction and partial characterisation of antioxidant pigment produced by Chryseobacterium sp. kr6. Nat. Prod. Res. 33, 1541–1549 (2019)

    Article  Google Scholar 

  40. Wahidin, M.A., Aruldass, C.A., Hamzah, M.A.A.M., Setu, S.A., Ahmad, W.A.: Flexirubin-type pigment production from Chryseobacterium artocarpi CECT 8497 and its application as natural ink. J. Energy Environ. Sustain. 3, 62–65 (2017)

    Google Scholar 

  41. Mumtaz, R., Bashir, S., Numan, M., Shinwari, Z.K., Ali, M.: Pigments from soil bacteria and their therapeutic properties: a mini review. Curr. Microbiol. 76, 783–790 (2019)

    Article  Google Scholar 

  42. Brandelli, A., Riffel, A.: Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electron. J. Biotechnol. 8, 35–42 (2005)

    Article  Google Scholar 

  43. Lv, L.-X., Sim, M.-H., Li, Y.-D., Min, J., Feng, W.-H., Guan, W.-J., Li, Y.-Q.: Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov. Process. Biochem. 45, 1236–1244 (2010). https://doi.org/10.1016/j.procbio.2010.03.011

    Article  Google Scholar 

  44. Wang, S.-L., Hsu, W.-T., Liang, T.-W., Yen, Y.-H., Wang, C.-L.: Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour. Technol. 99, 5679–5686 (2008). https://doi.org/10.1016/j.biortech.2007.10.024

    Article  Google Scholar 

  45. Bratosin, B.C., Darjan, S., Vodnar, D.C.: Single cell protein: a potential substitute in human and animal nutrition. Sustainability 13, 9284 (2021)

    Article  Google Scholar 

  46. Menendez, E., Garcia-Fraile, P.: Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol. 3, 502 (2017)

    Article  Google Scholar 

  47. Carro, L., Nouioui, I.: Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol. 3, 383 (2017)

    Article  Google Scholar 

  48. Radzki, W., Gutierrez Mañero, F.J., Algar, E., Lucas García, J.A., García-Villaraco, A., Ramos Solano, B.: Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek. 104, 321–330 (2013). https://doi.org/10.1007/s10482-013-9954-9

    Article  Google Scholar 

  49. Bhari, R., Kaur, M., Singh, R.S.: Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Curr. Microbiol. (2021). https://doi.org/10.1007/s00284-021-02491-z

    Article  Google Scholar 

  50. Kaur, M., Bhari, R., Singh, R.S.: Chicken feather waste-derived protein hydrolysate as a potential biostimulant for cultivation of mung beans. Biol. (Bratisl) 76, 1807–1815 (2021)

    Article  Google Scholar 

  51. Verma, A., Singh, H., Anwar, S., Chattopadhyay, A., Tiwari, K.K., Kaur, S., Dhilon, G.S.: Microbial keratinases: industrial enzymes with waste management potential. Crit. Rev. Biotechnol. 37, 476–491 (2017). https://doi.org/10.1080/07388551.2016.1185388

    Article  Google Scholar 

  52. Aruldass, C.A., Dufossé, L., Ahmad, W.A.: Current perspective of yellowish-orange pigments from microorganisms—a review. J. Clean. Prod. 180, 168–182 (2018). https://doi.org/10.1016/j.jclepro.2018.01.093

    Article  Google Scholar 

  53. Venil, C.K., Dufossé, L., Devi, R.: Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Front. Sustain. Food Syst. 4, 100 (2020). https://doi.org/10.3389/fsufs.2020.00100

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Institute for the Development of Sustainable Agriculture and funded by the Flagship Research Grant (HPU), Universitas Brawijaya, Year 2021 (Grant No. DIPA-023.17.2.677512/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunjung Mahatmanto.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahatmanto, T., Estiningtyas, N.R., Maharani, S.K. et al. Feather Waste Biorefinery using Chryseobacterium sp. A9.9 Adapted to Feathers as its Sole Carbon and Nitrogen Source. Waste Biomass Valor 13, 4137–4146 (2022). https://doi.org/10.1007/s12649-022-01766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01766-1

Keywords

Navigation