Skip to main content

Advertisement

Log in

New Method for Producing Carbon Sphere from Waste Tyre (NEWCSWT)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the study, it was aimed to define a new method for the production of clustered and hierarchical carbon spheres from waste tyres, 80% of which cannot be used in the world. A clustered and hierarchical carbon sphere was produced by applying chemical degradation and autoclave processes to waste tyre scraps, respectively. Waste tyre slurry was obtained by degrading the waste tyre scraps after waste tyre scraps swelled in H2SO4 and CH3OH–NaOH solution were mixed for 15 min at room condition. Different pressure (1–2.5–5 MPa), time (2–3–4 h) and temperature (200–300–400 °C) were chosen as parameters for the production of carbon spheres from 20 g of waste tyre slurry in the autoclave process. The produced carbon spheres were characterized by CHNS, FT-IR, SEM, BET, XRD, TEM, Raman analyzes. It has been determined that the most suitable conditions for the production of clustered and hierarchical carbon spheres from waste tyre were for 3 h at 300 °C under 5 MPa. The surface area of the clustered and hierarchical carbon sphere obtained under these conditions was 559.5 m2/g. As a result, a simple and cost-effective new method was introduced using waste tyre as the carbon source for the production of carbon spheres.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from Senay Balbay but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Senay Balbay.

References

  1. Sahiner, N.: Carbon spheres from lactose as green catalyst forfast hydrogen production via methanolysis. Inter. J. of Hydrogen Ener. (2018). https://doi.org/10.1016/j.ijhydene.2018.04.050

    Article  Google Scholar 

  2. Khodabakhshi, S., Kiani, S., Niu, Y., White, A.O., Suwaileh, W., Palmer, R.E., Barron, A.R., Andreoli, E.: Facile and environmentally friendly synthesis of ultra microporous carbon spheres: a significant improvement in CVD method. Carbon (2021). https://doi.org/10.1016/j.carbon.2020.08.056

    Article  Google Scholar 

  3. Zhang, P., Qiao, Z.A., Dai, S.: Recent advances in carbon nanospheres: synthetic routes and applications. Chem. Commun. (2015). https://doi.org/10.1039/C5CC01759A

    Article  Google Scholar 

  4. Boudjemaa, A., Rebahi, A., Terfassa, B., Chebout, R., Mokrani, T., Bachari, K., Coville, N.J.: Fe2O3/carbon spheres for efficient photo-catalytic hydrogen productionfrom water and under visible light irradiation. Solar Ener. Mater. Solar Cells (2015). https://doi.org/10.1016/j.solmat.2015.04.036

    Article  Google Scholar 

  5. Deshmukh, A.A., Mhlanga, S.D., Coville, N.J.: Carbon spheres. Mater. Sci. Engin. R. (2010). https://doi.org/10.1016/j.mser.2010.06.017

    Article  Google Scholar 

  6. Krıshnamurthy, G., Namıtha, R.: Synthesıs of structurally novel carbon micro/ nanospheres by low temperature-hydrothermal process. J. Chil. Chem. Soc. (2013). https://doi.org/10.4067/S0717-97072013000300030

    Article  Google Scholar 

  7. Bowles, A.J., Fowler, G.D., O’Sullivan, C., Parker, K.: Sustainable rubber recycling from waste tyres by waterjet: a novel mechanistic and practical analysis. Sustain. Mater. Techn. (2020). https://doi.org/10.1016/j.susmat.2020.e00173

    Article  Google Scholar 

  8. Ren, Q., Wu, Z., Hu, S., He, L., Su, S., Wang, Y., Jiang, L., Xiang, J.: Sulfur self-doped char with high specific capacitance derived from wastetire: effects of pyrolysis temperature. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.140193

    Article  Google Scholar 

  9. Gomez-Hernandez, R., Panecatl-Bernal, Y., Mendez-Rojas, M.A.: High yield and simple one-step production of carbon black nanoparticles from waste tires. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02139

    Article  Google Scholar 

  10. Maroufi, S., Mayyas, M., Sahajwalla, V.: Nano-carbons from waste tyre rubber: an insight into structure and morphology. Waste Manage. (2017). https://doi.org/10.1016/j.wasman.2017.08.020

    Article  Google Scholar 

  11. Heidari, A., Younesi, H.: Synthesis, characterization and life cycle assessment of carbon nanospheres from waste tires pyrolysis over ferrocene catalyst. J. Environ. Chem. Engin. (2020). https://doi.org/10.1016/j.jece.2020.103669

    Article  Google Scholar 

  12. Tripathi, N.K.: Porous carbon spheres: recent developments and applications. AIMS Mater. Sci. (2018). https://doi.org/10.3934/matersci.2018.5.1016

    Article  Google Scholar 

  13. Balbay, S.: Chemical decomposition of waste tires and evaluation of the obtained products, PhD Thesis, Bilecik Seyh Edebali University (2017)

  14. Balbay, S., Acikgoz, C.: Devulcanization of waste tyre rubber and solid product obtained from The Method, Patent no: 2015/13034, 2019

  15. Lee, S.-M., Lee, S.-H., Roh, J.-S.: Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis. Curr. Comput.-Aided Drug Des. (2021). https://doi.org/10.3390/cryst11020153

    Article  Google Scholar 

  16. Puech, P., Dabrowska, A., Ratel-Ramond, N., Vignoles, G.L., Monthioux, M.: New insight on carbonisation and graphitisation mechanisms as obtained from a bottom-up analytical approach of X-ray diffraction patterns. Carbon (2019). https://doi.org/10.1016/j.carbon.2019.03.013

    Article  Google Scholar 

  17. Rao, L., Zhang, Q., Wen, M., Mao, Z., Wei, H., Chang, H.-J., Niu, X.: Solvent regulation synthesis of singlecomponent white emission carbon quantum dots for white light-emitting diodes. Nanotechnol. Rev. (2021). https://doi.org/10.1515/ntrev-2021-0036

    Article  Google Scholar 

  18. Alanyalıoğlu, M., Bayrakçeken, F., Demir, Ü.: Preparation of PbS thin films: a new electrochemical route for underpotential deposition. Electrochim. Acta (2009). https://doi.org/10.1016/j.electacta.2009.06.056

    Article  Google Scholar 

  19. Alanyalıoğlu, M., Segura, J.J., Oró-Solè, J., Casañ-Pastor, N.: The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon (2012). https://doi.org/10.1016/j.carbon.2011.07.064

    Article  Google Scholar 

  20. Howe, J.Y., Rawn, C.J., Jones, L.E., Ow, H.: Improved crystallographic data for graphite. Powder Diffr. (2003). https://doi.org/10.1154/1.1536926

    Article  Google Scholar 

  21. He, X., Xu, X., Bo, G., Yan, Y.: Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv. (2020). https://doi.org/10.1039/c9ra08695a

    Article  Google Scholar 

  22. Inamdar, S., Choi, H.-S., Wang, P., Song, M.Y., Yu, J.-S.: Sulfur-containing carbon by flame synthesis as efficient metal-free electrocatalyst for oxygen reduction reaction. Electrochem. Commun. (2013). https://doi.org/10.1016/j.elecom.2013.01.023

    Article  Google Scholar 

  23. Fujimoto, H.: Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon (2003). https://doi.org/10.1016/S0008-6223(03)00116-7

    Article  Google Scholar 

  24. Maroufi, S., Mayyas, M., Sahajwalla, V.: Nano-carbons from waste tyre rubber: an insight into structure and morphology. Waste Manage. (2017). https://doi.org/10.1016/j.wasman.2017.08.020

    Article  Google Scholar 

  25. Li, M., Li, W., Liu, S.: Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method. J. Mater. Res. 27(08), 1117–1123 (2012). https://doi.org/10.1557/jmr.2011.447

    Article  Google Scholar 

  26. Fujita, M., Komatsu, N., Kimura, T.: Sonochemical preparation of carbon spheres. Ultrason. Sonochem. 21(3), 943–945 (2014). https://doi.org/10.1016/j.ultsonch.2013.11.013

    Article  Google Scholar 

  27. Mao, H., Chen, X., Huang, R., Chen, M., Yang, R., Lan, P., Zhou, M., Zhang, F., Yang, Y., Zhou, X.: Fast preparation of carbon spheres from enzymatic hydrolysis lignin: effects of hydrothermal carbonization conditions. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-27777-4

    Article  Google Scholar 

  28. Sulistya, E., Hui-Hui, L., Attenborough, N.K., Pourshahrestani, S., Kadri, N.A., Zeimaran, E., Abd Razak, N.A., Horri, B.A., Salamatinia, B.: Hydrothermal synthesis of carbon microspheres from sucrose with citric acid as a catalyst: physicochemical and structural properties. J. Taibah Univ. Sci. 14(1), 1042–1050 (2020). https://doi.org/10.1080/16583655.2020.1794566

    Article  Google Scholar 

  29. Simonova, D., Karamancheva, I.: Application of fourier transform infrared spectroscopy for tumor diagnosis. Biotechnol. Biotechnol. Equip. (2013). https://doi.org/10.5504/BBEQ.2013.0106

    Article  Google Scholar 

  30. Shi, J., Xing, D., Li, J.: FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Ener. Procedia (2012). https://doi.org/10.1016/j.egypro.2012.01.122

    Article  Google Scholar 

  31. Wang, X., Liu, J., Xu, W.: One-step hydrothermal preparation of amino-functionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr(VI) for water purification. Colloids Surf. A: Physicochem Eng. Aspects (2012). https://doi.org/10.1016/j.colsurfa.2012.09.035

    Article  Google Scholar 

  32. Biniak, S., Trykowski, G., Walczyk, M., Richert, M.: Thermo-chemical modification of low-dimensional carbons: an infrared study. J. Appl. Spectr. (2016). https://doi.org/10.1007/s10812-016-0331-0

    Article  Google Scholar 

  33. Liu, Y., Kim, H.J.: Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors (2017). https://doi.org/10.3390/s17071469

    Article  Google Scholar 

  34. Moosavinejad, S.M., Madhoushi, M., Vakili, M., Rasouli, D.: Valuatıon Of degradation in chemical compounds of wood in historical buildings using FT-IR and Ft-raman vibrational spectroscopy, Maderas. Cienc. Tecn. (2019). https://doi.org/10.4067/S0718-221X2019005000310

    Article  Google Scholar 

  35. Borah, D.: Desulphurization of organic sulphur from coal by electron transfer process with Co2+ ion. Fuel Proc. Tech. (2004). https://doi.org/10.1016/j.fuproc.2004.04.004

    Article  Google Scholar 

  36. Li, T., Yamane, H., Arakawa, T., Narhi, O.L., Philo, J.: Effect of intermolecular disulfide bond on the conformation and stability of glial cell line-derived neurotrophic factor. Protein Eng. (2002). https://doi.org/10.1093/protein/15.1.59

    Article  Google Scholar 

  37. Yang, X., Xia, H., Liang, Z., Li, H., Yu, H.: Monodisperse carbon nanospheres with hierarchical porous structure as electrode material for supercapacitor. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2318-z

    Article  Google Scholar 

  38. Wang, L., Li, Y., Yang, K., Lu, W., Yu, J., Gao, J., Liao, G., Qu, Y., Wang, X., Li, X., Yin, Z.: Hierarchical porous carbon microspheres derived from biomass-corncob as ultra-high performance supercapacitor electrode. Int. J. Electrochem. Sci. (2017). https://doi.org/10.20964/2017.06.16

    Article  Google Scholar 

  39. Wang, Z., Sun, L., Xu, F., Peng, X., Zou, Y., Chu, H., Ouyang, L., Zhud, M.: Synthesis of N-doped hierarchical carbon spheres for CO2 capture and supercapacitors. RSC Adv. (2015). https://doi.org/10.1039/C5RA20484D

    Article  Google Scholar 

  40. Gong, Y., Wei, Z., Wang, J., Zhang, P., Li, H., Wang, Y.: Design and fabrication of hierarchically porous carbon with a template-free method. Scı. Rep. (2014). https://doi.org/10.1038/srep06349

    Article  Google Scholar 

  41. Chu, P.K., Li, L.: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. (2006). https://doi.org/10.1016/j.matchemphys.2005.07.048

    Article  Google Scholar 

  42. Çelik, Y., Flahaut, E., Suvacı, E.: A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent, Flatchem I. (2017). https://doi.org/10.1016/j.flatc.2016.12.002

  43. Wong, C.H., Ambrosi, A., Pumera, M.: Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale (2012). https://doi.org/10.1039/c2nr30989k

    Article  Google Scholar 

  44. Kukułka, W., Wenelska, K., Baca, M., Chen, X., Mijowska, E.: From hollow to solid carbon spheres: time-dependent facile synthesis. Nanomaterials (2018). https://doi.org/10.3390/nano8100861

    Article  Google Scholar 

  45. Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R.: Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 11(8), 3190–3196 (2010). https://doi.org/10.1021/nl904286r

    Article  Google Scholar 

  46. Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  Google Scholar 

  47. Lee, A.Y., Yang, K., Anh, N.D., Park, C., Lee, S.M., Lee, T.G., Jeong, M.S.: Raman study of D* band in graphene oxide and its correlation with reduction. App. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.147990

    Article  Google Scholar 

  48. Wu, C., Wei, C., Jin, X., Akhtar, R., Zhang, W.: Carbon spheres as lubricant additives for improving tribological performance of polyetheretherketone. J. Mater. Sci. 54, 5127–5135 (2019). https://doi.org/10.1007/s10853-018-3177-4

    Article  Google Scholar 

  49. Kumar, B., Verma, D.K., Singh, A.K., Kavita, Rashmi, N., Rastogi, R.B.: Nanohybrid Cu@C: synthesis, characterization and application in enhancement of lubricity. Comp. Interfaces. 27, 777–794 (2020)

    Article  Google Scholar 

  50. Hu, E., Hu, X., Liu, T., Fang, L., Dearn, K.D., Xu, H.: The role of soot particles in the tribological behavior of enginelubricating oils. Wear (2013). https://doi.org/10.1016/j.wear.2013.05.002

    Article  Google Scholar 

  51. Biscoe, J., Warren, B.E.: An x-ray study of carbon black. J. Appl. Phys. (1942). https://doi.org/10.1063/1.1714879

    Article  Google Scholar 

  52. Hishiyama, Y., Nakamura, M.: X-ray diffraction in oriented carbon films with turbostratic structure. Carbon (1995). https://doi.org/10.1016/0008-6223(95)00086-s

    Article  Google Scholar 

  53. Fujimoto, H.: Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon (2003). https://doi.org/10.1016/S0008-6223(03)00116-7

    Article  Google Scholar 

  54. Sahu, V., Shekhar, S., Ahuja, P., Gupta, G., Singh, S.K., Sharma, R.K., Singh, G.: Synthesis of hydrophilic carbon black; role of hydrophilicity in maintaining the hydration level and protonic conduction. RSC Adv. (2013). https://doi.org/10.1039/c3ra23136d

    Article  Google Scholar 

  55. Saravanan, M., Ganesan, M., Ambalavanan, S.: An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery. J. Pow. Sour. (2014). https://doi.org/10.1016/j.jpowsour.2013.10.143

    Article  Google Scholar 

  56. Sharma, V., Uy, D., Gangopadhyay, A., O’Neill, Paxton, W.A., Sammut, A., Ford, M.A., Aswath, P.B.: Structure and chemistry of crankcase and exhaust soot extracted from diesel engines, Carbon. (2016). https://doi.org/10.1016/j.carbon.2016.03.024

  57. Alp, R.B., Dilmaç, Ö.F., Şimşek, B.: Oxidation of the graphite and carbon black obtained from worn out waste tires using improved hummers method. Int. J. Adv. Eng. Pure Sci. 3, 238–244 (2019). https://doi.org/10.7240/jeps.523217

    Article  Google Scholar 

  58. Balbay, S.: Effects of recycled carbon-based materials on tyre. J. Mat. Cyc. Waste Manag. (2020). https://doi.org/10.1007/s10163-020-01064-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordination of Scientific Research Projects (BAP) of the Bilecik Seyh Edebali University (Project No: 2019-01.BŞEÜ.11-02).

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senay Balbay.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbay, S., Acıkgoz, C. New Method for Producing Carbon Sphere from Waste Tyre (NEWCSWT). Waste Biomass Valor 13, 4951–4962 (2022). https://doi.org/10.1007/s12649-022-01765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01765-2

Keywords

Navigation