Skip to main content

Advertisement

Log in

Acinetobacter indicus CCS-12: A New Bacterial Source for the Production and Biochemical Characterization of Thermostable Chitinase with Promising Antifungal Activity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Background

In the recent epoch, chitinolytic enzymes have attained much attention as promising biocontrol agents and ability to convert recalcitrant chitinous wastes into valuable products. Some chitinolytic microorganisms have emerged as the potential candidate to carry a noticeable ability to degrade this polysaccharide in nature.

Objective

Therefore, in this study, a new bacterial strain Acinetobacter indicus CCS-12 was isolated, identified and characterized for the production of a highly active chitinolytic enzyme. The production of extracellularly secreted chitinase was enhanced through the optimization of various cultivation parameters.

Results

Hence, the yield was improved by 2.32-fold in 3ZYB medium (pH 7.0) containing 1% (w/v) colloidal chitin and malt extract when incubated at 45 °C for 48 h with agitation (200 rpm). The enzyme was purified to homogeneity with an estimated molecular mass of 50 kDa by SDS-PAGE and showed optimal activity at pH 7.0 (phosphate buffer) and 60 °C. It was quite stable for 4 h over a range of pH (5.5 to 10.0) and temperature (20 to 60 °C), with a thermal denaturing half-life of 4 h at 75 °C. No obvious inhibitory influence was perceived with different chemical modulators, though enzyme activity was significantly enhanced with Ca2+ (191.76%), Mn2+ (161.25%), Mg2+ (158.44%), Na+ (147.44%), Fe2+ (131.41%) and Cu2+ (125.06%), EDTA (126.02%) and β-mercaptoethanol (131.06%). The Km, Vmax, kcat, and kcat Km−1 values of purified chitinase for colloidal chitin were 0.61 ± 0.11 mg mL−1 and 314.26 ± 0.16 µmol mg−1 min−1, 966.23 s−1 and 1583.98 mL mg−1 s−1, respectively. The purified chitinase exhibited perceptible antifungal activity against some destructive phytopathogens.

Conclusion

With these auspicious features, this enzyme can be effectively used as a biocontrol agent, food additive, for the recycling of chitinous waste materials, in pharmaceutical and various other industries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information file].

References

  1. Kim, T.I., Ki, K.S., Lim, D.H., Vijayakumar, M., Park, S.M., Choi, S.H., Kim, K.Y., Im, S.K., Park, B.Y.: Novel Acinetobacter parvus HANDI 309 microbial biomass for the production of N-acetyl-β-D-glucosamine (GlcNAc) using swollen chitin substrate in submerged fermentation. Biotechnol. Biofuels. 10, 1–9 (2017). https://doi.org/10.1186/s13068-017-0740-1

    Article  Google Scholar 

  2. Akram, F., Akram, R., Haq, I.U., Nawaz, A., Jabbar, Z., Ahmed, Z.: Biotechnological eminence of chitinases: A focus on thermophilic enzyme sources, production strategies and prominent applications. Protein Pept. Lett. (2021). https://doi.org/10.2174/0929866528666210218215359

    Article  Google Scholar 

  3. Lodhi, G., Kim, Y.S., Hwang, J.W., Kim, S.K., Jeon, Y.J., Je, J.Y., Ahn, C.B., Moon, S.H., Jeon, B.T., Park, P.J.: Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/654913

    Article  Google Scholar 

  4. Rameshthangam, P., Solairaj, D., Arunachalam, G., Ramasamy, P.: Chitin and Chitinases: biomedical and environmental applications of chitin and its derivatives. J. Enzymes 1, 20–43 (2018). https://doi.org/10.14302/issn.2690-4829.jen-18-2043

    Article  Google Scholar 

  5. Aliabadi, N., Aminzadeh, S., Karkhane, A.A., Haghbeen, K.: Thermostable chitinase from Cohnella sp. A01: isolation and product optimization. Braz. J. Microbiol. 47, 931–940 (2016)

    Article  Google Scholar 

  6. Yan, Q., Fong, S.S.: Cloning and characterization of a chitinase from Thermobifida fusca reveals Tfu_0580 as a thermostable and acidic endochitinase. Biotechnol. Rep. 19, e00274 (2018). https://doi.org/10.1016/j.btre.2018.e00274

    Article  Google Scholar 

  7. Mohamed, S., Bouacem, K., Mechri, S., Addou, N.A., Laribi-Habchi, H., Fardeau, M.L., Jaouadi, B., Bouanane-Darenfed, A., Hacène, H.: Purification and biochemical characterization of a novel acido-halotolerant and thermostable endo-chitinase from Melghiribacillus thermohalophilus strain Nari2AT. Carbohydr. Res. 473, 46–56 (2019). https://doi.org/10.1016/j.carres.2018.12.017

    Article  Google Scholar 

  8. Bouacem, K., Laribi-Habchi, H., Mechri, S., Hacene, H., Jaouadi, B., Bouanane-Darenfed, A.: Biochemical characterization of a novel thermostable chitinase from Hydrogenophilus hirschii strain KB-DZ44. Int. J. Biol. Macromol. 106, 338–350 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.026

    Article  Google Scholar 

  9. Akeed, Y., Atrash, F., Naffaa, W.: Partial purification and characterization of chitinase produced by Bacillus licheniformis B307. Heliyon 6, e03858 (2020)

    Article  Google Scholar 

  10. Hussin, N.A., Ab Majid, A.H.: Termiticidal activity of chitinase enzyme of Bacillus licheniformis, a symbiont isolated from the gut of Globitermes sulphureus worker. Biocatal. Agric. Biotechnol. 24, 101548 (2020). https://doi.org/10.1016/j.bcab.2020.101548

    Article  Google Scholar 

  11. Kuddus, M.: Potential applications of microbial chitinase: Recent development. Biochem. Cell Arch. 14, 1–7 (2014)

    Google Scholar 

  12. Itoh, T., Kimoto, H.: Bacterial chitinase system as a model of chitin biodegradation. Adv. Exp. Med. Biol. 1142, 131–151 (2019). https://doi.org/10.1007/978-981-13-7318-3_7

    Article  Google Scholar 

  13. Salas-Ovilla, R., Gálvez-López, D., Vázquez-Ovando, A., Salvador-Figueroa, M., Rosas-Quijano, R.: Isolation and identification of marine strains of Stenotrophomona maltophilia with high chitinolytic activity. PeerJ 7, e6102 (2019). https://doi.org/10.7717/peerj.6102

    Article  Google Scholar 

  14. Setia, I.N., Suharjono.: Chitinolytic Assay and Identification of Bacteria Isolated from Shrimp Waste Based on 16S rDNA Sequences. Adv. Microbiol. 5, 541–548 (2015). https://doi.org/10.4236/aim.2015.57056

    Article  Google Scholar 

  15. Okay, S., Ozdal, M., Kurbanoǧlu, E.B.: Characterization, antifungal activity, and cell immobilization of a chitinase from Serratia marcescens MO-1. Turk. J. Biol. 37, 639–644 (2013). https://doi.org/10.3906/biy-1208-45

    Article  Google Scholar 

  16. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  17. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  18. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Willaims, S.T.(1994) Bergey's manual of determinative bacteriology: Ninth Edition, Baltimore, Maryland 21202, USA

  19. Sambrook, J., Fritsch, E.F., Maniatis, T.(1989) Molecular Cloning: A laboratory manual, 2nd Ed. 3 volumes. Cold Springs Harbor Laboratory, Cold Springs Harbor, NY

  20. Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U.S.A. 87(12), 4576–4579 (1990). https://doi.org/10.1073/pnas.87.12.4576

    Article  Google Scholar 

  21. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhan, Z., Miller, W., et al.: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  22. Haq, I.U., Akram, F.: Enhanced production of a recombinant multidomain thermostable GH9 processive endo-1,4-β-Glucanase (CenC) from Ruminiclostridium thermocellum in a mesophilic host through various cultivation and induction Strategies. Appl. Biochem. Biotechnol. 183, 171–188 (2017). https://doi.org/10.1007/s12010-017-2437-0

    Article  Google Scholar 

  23. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  24. Farag, A.M., Abd-Elnabey, H.M., Ibrahim, H.A.H., El-Shenawy, M.: Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. The Egyptian Journal of Aquatic Research. 42, 185–192 (2016). https://doi.org/10.1016/j.ejar.2016.04.004

    Article  Google Scholar 

  25. Sudha, S., Sharon, P.P., Yadav, K.R., Priyanka, R.B.S.: Optimization of chitinase production from lake sediment inhabitant Bacillus thuringiensis strain LS1 and Bacillus cereus strain LS2. Asian J. Pharm. 14, 175–182 (2020). https://doi.org/10.22377/ajp.v14i2.3611

    Article  Google Scholar 

  26. Ali, M.H., Aljadaani, S., Khan, J., Sindi, I., Aboras, M., Aly, M.M.: Isolation and molecular identification of two chitinase producing bacteria from marine shrimp shell wastes. Pak. J. Biol. Sci. 23, 139–149 (2020). https://doi.org/10.3923/pjbs.2020.139.149

    Article  Google Scholar 

  27. Du, J., Duan, S., Miao, J., Zhai, M., Cao, Y.: Purification and characterization of chitinase from Paenibacillus sp. Biotechnol. Appl. Biochem. 68, 30–40 (2021). https://doi.org/10.1002/bab.1889

    Article  Google Scholar 

  28. Shivalee, A., Lingappa, K., Mahesh, D.: Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation by Streptomyces pratensis strain KLSL55. J. Genet. Eng. Biotechnol. 16, 421–426 (2018). https://doi.org/10.1016/j.jgeb.2017.12.006

    Article  Google Scholar 

  29. Idris, A.N., Seong, T.S., Adnan, A.F.M.: Study of thermostable chitinase isolated and purified from oryctes rhinoceros larvae gut. Sains Malaysiana. 50, 339–349 (2021)

    Article  Google Scholar 

  30. Fu, X., Yan, Q., Wang, J., Yang, S., Jiang, Z.: Purification and biochemical characterization of novel acidic chitinase from Paenicibacillus barengoltzii. Int. J. Biol. Macromol. 91, 973–979 (2016). https://doi.org/10.1016/j.ijbiomac.2016.06.050

    Article  Google Scholar 

  31. Ray, L., Panda, A.N., Mishra, S.R., Pattanaik, A.K., Adhya, T.K., Suar, M., Raina, V.: Purification and characterization of an extracellular thermo-alkali stable, metal tolerant chitinase from Streptomyces chilikensis RC1830 isolated from a brackish water lake sediment. Biotechnol. Rep. 29, e00311 (2019). https://doi.org/10.1016/j.btre.2019.e00311

    Article  Google Scholar 

  32. Kim, T.I., Lim, D.H., Baek, K.S., Jang, S.S., Park, B.Y., Mayakrishnan, V.: Production of chitinase from Escherichia fergusonii, chitosanase from Chryseobacterium indologenes, Comamonas koreensis and its application in N-acetylglucosamine production. Int. J. Biol. Macromol. 112, 1115–1121 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.056

    Article  Google Scholar 

  33. Kumar, M., Brar, A., Vivekanand, V., Pareek, N.: Process optimization, purification and characterization of a novel acidic, thermostable chitinase from Humicola grisea. Int. J. Biol. Macromol. 116, 931–938 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.125

    Article  Google Scholar 

  34. Liu, C., Shen, N., Wu, J., Jiang, M., Shi, S., Wang, J., Wei, Y., Yang, L.: Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002. Peer J. 8, e8964 (2020). https://doi.org/10.7717/peerj.8964

    Article  Google Scholar 

  35. Halder, S.K., Jana, A., Paul, T., Das, A., Ghosh, K., Pati, B.R., Mondal, K.C.: Purification and biochemical characterization of chitinase of Aeromonas hydrophila SBK1 biosynthesized using crustacean shell. Biocatal. Agric. Biotechnol. 5, 211–218 (2016). https://doi.org/10.1016/j.bcab.2015.11.003

    Article  Google Scholar 

  36. Wang, X., Zhao, Y., Tan, H., Chi, N., Zhang, Q., Du, Y., Yin, H.: Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int. J. Biol. Macromol. 70, 455–462 (2014). https://doi.org/10.1016/j.ijbiomac.2014.07.033

    Article  Google Scholar 

  37. Cheba, B.A., Zaghloul, T.I.: Bacillus sp R2 chitinase: substrate specificity, shelf-life stability, and antifungal activity. Procedia Manuf. 46, 879–884 (2020). https://doi.org/10.1016/j.promfg.2020.05.003

    Article  Google Scholar 

  38. Akram, F., Haq, I.U.: Jabbar, Z: Production and characterization of a novel thermo-and detergent stable keratinase from Bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. Inter. J. Biol. Macromol. 164, 371–383 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.146

    Article  Google Scholar 

  39. Cheba, B.A., Zaghloul, T.I., EL-Massry, M.H., EL-Mahdy, A.R.: Effect of metal ions, chemical agents, and organic solvent on Bacillus sp R2 chitinase activity. Proc. Technol. 22, 465–470 (2016). https://doi.org/10.1016/j.protcy.2016.01.090

    Article  Google Scholar 

  40. Kapoor, M., Beg, Q.K., Bhushan, B., Dadhich, K.S., Hoondal, G.S.: Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-CP-2. Process Biochem. 36, 467–473 (2000)

    Article  Google Scholar 

  41. Chen, L., Wei, Y., Shi, M., Li, Z., Zhang, S.H.: An archaeal chitinase with a secondary capacity for catalyzing cellulose and its biotechnological applications in shell and straw degradation. Front. Microbiol. 10, 1253 (2019). https://doi.org/10.3389/fmicb.2019.01253

    Article  Google Scholar 

  42. Velusamy, P., Kim, K.Y.: Chitinolytic activity of Enterobacter sp. KB3 antagonistic to Rhizoctonia solani and its role in the degradation of living fungal hyphae. Int. Res. J. Microbiol. 2, 206–214 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Akram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declare that they have no competing interests. We assure the integrity and quality of our research work. It is also stated that there is no plagiarism in this work and all points taken from other authors are well cited in the text. This study is completely independent and impartial.

Research involving Human Participants and/or Animals

N/A. This research did not involve human participants and/or animals.

Informed consent

N/A. This research did not involve human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, F., Haq, I.u., Roohi, A. et al. Acinetobacter indicus CCS-12: A New Bacterial Source for the Production and Biochemical Characterization of Thermostable Chitinase with Promising Antifungal Activity. Waste Biomass Valor 13, 3371–3388 (2022). https://doi.org/10.1007/s12649-022-01753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01753-6

Keywords

Navigation