Skip to main content

Advertisement

Log in

Incineration of Aviary Manure: The Case Studies of Poultry Litter and Laying Hens Manure

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The industrial incineration of aviary manure is still far from the concept of using its ash residuals for nutrient uptake by plants and most of these materials are landfilled under futile fixed cost. Aviary manure includes poultry litter mixed with different aviary bedding materials or laying hens manure, which may be burned using different incineration technologies and conditions. This study aims to determine the comparative characterisation of P-rich ash residues sampled at Güres Energy (Turkey) fluidized bed combustion of laying hens manure and at Campoaves (Portugal) chain grate stoker combustion of rice husk poultry litter. The effect of different fuels and different combustion systems on P speciation in ash was investigated: the characterisation of global samples (bottom ash (BA), economiser fly ash (FAECO), cyclone fly ash (FACYC)) and respective size-fractions were done chemically (proximate and elemental analysis by X-ray fluorescence–XRF–and Inductively Coupled Plasma Mass Spectroscopy – ICP-MS), morphologically (detailed imaging and X-ray micro analysis by Scanning Electron Microscopy—Energy-Dispersive X-ray spectrometry–SEM−EDS) and mineralogically (X-ray diffraction–XRD). Phosphorus was detected in Güres ashes mainly as hydroxyapatite crystals alongside with CaCO3 relics and CaO, while Campoaves ash fractions contained P also as Na–K-Mg phosphate and major amounts of rice husk relics including unburnt char and silica phases. Both Güres and Campoaves ashes are complex but the combustion of aviary manure under these setting conditions appears to be promising for P recovery owing to their high P content and limited trace elements respecting the limitations imposed by EU legislation for fertilisers applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Hä Ggströ, G., Fü Rsatz, K., Kuba, M., Skoglund, N., Hman, M.O.: Fate of phosphorus in fluidized bed cocombustion of chicken litter with wheat straw and bark residues. Energy Fuels (2020). https://doi.org/10.1021/acs.energyfuels.9b03652

    Article  Google Scholar 

  2. Luyckx, L., de Leeuw, G.H.J., Van Caneghem, J.: Characterisation of poultry litter ash in view of its valorisation. Waste and Biomass Valorisation. 1, 3 (2019). https://doi.org/10.1007/s12649-019-00750-6

    Article  Google Scholar 

  3. Bindraban, P.S., Dimkpa, C., Nagarajan, L., Roy, A., Rabbinge, R.: Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils. 51, 897–911 (2015). https://doi.org/10.1007/s00374-015-1039-7

    Article  Google Scholar 

  4. Geissler, B., Hermann, L., Mew, M.C., Steiner, G.: Striving toward a circular economy for phosphorus: The role of phosphate rock mining. Minerals. 8, 395 (2018). https://doi.org/10.3390/min8090395

    Article  Google Scholar 

  5. European Commission: 20 critical raw materials - major challenge for EU industry. (2014)

  6. Smol, M., Preisner, M., Bianchini, A., Rossi, J., Hermann, L., Schaaf, T., Kruopienė, J., Pamakštys, K., Klavins, M., Ozola-Davidane, R., Kalnina, D., Strade, E., Voronova, V., Pachel, K., Yang, X., Steenari, B.-M., Svanström, M.: Strategies for sustainable and circular management of phosphorus in the baltic sea region: The holistic approach of the InPhos project. Sustainability. 12, 2567 (2020). https://doi.org/10.3390/su12062567

    Article  Google Scholar 

  7. Tirado, R., Allsopp, M.: Phosphorus in agriculture Problems and solutions. Greenpeace Res. Lab. Tech. Rep. 3–30 (2012)

  8. Karunanithi, R., Szogi, A.A., Bolan, N., Naidu, R., Loganathan, P., Hunt, P.G., Vanotti, M.B., Saint, C.P., YongSik, O., Krishnamoorthy, S.: Chapter three - phosphorus recovery and reuse from waste streams. Adv. Agron. 131, 173–250 (2015)

    Article  Google Scholar 

  9. van Dijk, K.C., Lesschen, J.P., Oenema, O.: Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 542, 1078–1093 (2016). https://doi.org/10.1016/j.scitotenv.2015.08.048

    Article  Google Scholar 

  10. A, N.B., B, A.S., A, B.S., A, T.C.(2010) The management of phosphorus in poultry litter. World. 317–320

  11. Patterson, P.H., Moore, P.A., Angel, R.: Phosphorus and poultry nutrition. Phosphorus Agric. Environ. 46, 635–682 (2005)

    Google Scholar 

  12. Kanani, F., Heidari, M.D., Gilroyed, B.H., Pelletier, N.: Waste valorisation technology options for the egg and broiler industries: A review and recommendations. J Cleaner Production 262, 121129 (2020)

    Article  Google Scholar 

  13. Florin, N.H., Maddocks, A.R., Wood, S., Harris, A.T.: High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia. Waste Manag. 29, 1399–1408 (2009). https://doi.org/10.1016/j.wasman.2008.10.002

    Article  Google Scholar 

  14. Ashworth, A.J., Chastain, J.P., Moore, P.A.: Nutrient Characteristics of Poultry Manure and Litter. Production, Characteristics, Animal Manure (2020). https://doi.org/10.2134/asaspecpub67.c5

    Book  Google Scholar 

  15. Cavalaglio, G., Coccia, V., Cotana, F., Gelosia, M., Nicolini, A., Petrozzi, A.: Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes. Waste Manag. 73, 496–503 (2018). https://doi.org/10.1016/j.wasman.2017.05.037

    Article  Google Scholar 

  16. Bolan, N.S., Szogi, A.A., Chuasavathi, T., Seshadri, B., Rothrock, M.J., Panneerselvam, P.: Uses and management of poultry litter. Worlds. Poult. Sci. J. 66, 673–698 (2010). https://doi.org/10.1017/S0043933910000656

    Article  Google Scholar 

  17. He, Z., Pagliari, P.H., Waldrip, H.M.: Applied and environmental chemistry of animal manure: A review. Pedosphere 26, 779–816 (2016). https://doi.org/10.1016/S1002-0160(15)60087-X

    Article  Google Scholar 

  18. Hakan Bayraktar, Ö., Baki Unal, H., Cengiz Akdeniz, R., Alkan, I.: Evaluation possibilities of chicken manure in Turkey. Agric. Eng. 19, 5–14 (2015). https://doi.org/10.14654/ir.2015.154.116

    Article  Google Scholar 

  19. Li, B., Boiarkina, I., Yu, W., Huang, H.M., Munir, T., Wang, G.Q., Young, B.R.: Phosphorous recovery through struvite crystallisation: Challenges for future design, (2019)

  20. Vanotti, M.B., García-González, M.C., Szögi, A.A., Harrison, J.H., Smith, W.B., Moral, R.: Removing and Recovering Nitrogen and Phosphorus from Animal Manure. Presented at the January 9 (2020)

  21. Häggström, G., Engineering, E.: Experimental studies of ash transformation processes in thermochemical conversion of P-rich biomass and sludge. Presented at the

  22. Huang, Y., Dong, H., Shang, B., Xin, H., Zhu, Z.: Characterisation of animal manure and cornstalk ashes as affected by incineration temperature. Appl. Energy. 88, 947–952 (2011). https://doi.org/10.1016/j.apenergy.2010.08.011

    Article  Google Scholar 

  23. Vassilev, S.V., Baxter, D., Vassileva, C.G.: An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 117, 152–183 (2014). https://doi.org/10.1016/J.FUEL.2013.09.024

    Article  Google Scholar 

  24. Santos Dalólio, F., da Silva, J.N., Carneiro de Oliveira, A.C., Ferreira Tinôco, I. de F., Christiam Barbosa, R., Resende, M. de O., Teixeira Albino, L.F., Teixeira Coelho, S.: Poultry litter as biomass energy: A review and future perspectives, (2017)

  25. Mierzwa-Hersztek, M., Gondek, K., Jewiarz, M., Dziedzic, K.: Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J. Mater. Cycles Waste Manag. 21, 786–800 (2019). https://doi.org/10.1007/s10163-019-00832-6

    Article  Google Scholar 

  26. Leng, L., Bogush, A.A., Roy, A., Stegemann, J.A.: Characterisation of ashes from waste biomass power plants and phosphorus recovery. Sci. Total Environ. 690, 573–583 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.312

    Article  Google Scholar 

  27. European Commission (2000) Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the Incineration of Waste. Off. J. Eur. Communities. L 269: 1–15 .

  28. Fahimi, A., Bilo, F., Assi, A., Dalipi, R., Federici, S., Guedes, A., Valentim, B., Olgun, H., Ye, G., Bialecka, B., Fiameni, L., Borgese, L., Cathelineau, M., Boiron, M.-C., Predeanu, G., Bontempi, E.: Poultry litter ash characterisation and recovery. Waste Manag. 111, 10–21 (2020). https://doi.org/10.1016/j.wasman.2020.05.010

    Article  Google Scholar 

  29. En, D.S.: Dansk standard Fast biobrændsel – Bestemmelse af partikelstørrelsesfordeling – Del 2 : Sigtemetode med vibrerende sigter på 3 , 15 mm og derunder Solid biofuels – Determination of particle size distribution – Part 2 : Vibrating screen method using. (2015)

  30. ISO 11722:2013: Solid mineral fuels — Hard coal — Determination of moisture in the general analysis test sample by drying in nitrogen. 2013, (2013)

  31. ISO 1171:2010: Solid mineral fuels — Determination of ash. 2010, (2010)

  32. ISO_10993–12: Solid mineral fuels — Determination of volatile matter. 61010–1 © Iec2001. 2003, 13 (2021)

  33. Romanian Standard Association: ISO 622:1981(en), Solid mineral fuels — Determination of phorphorus content — Reduced molybdophosphate photometric method, https://www.iso.org/obp/ui/#iso:std:iso:622:ed-1:v1:en

  34. Ingamells, C.O.: Lithium metaborate flux in silicate analysis. Anal. Chim. Acta. 52, 323–334 (1970). https://doi.org/10.1016/S0003-2670(01)80963-6

    Article  Google Scholar 

  35. ISO 7404–2: Methods for the petrographic analysis of coals — Part 2: Methods of preparing coal samples, (2009)

  36. Fuertes, A.B., National, S., Marban, G., National, S., Rubiera, F., National, S.: Kinetics of Thermal-Decomposition of Limestone Particles in A Fluidised-Bed Reactor. (1993)

  37. Fiameni, L., Assi, A., Fahimi, A., Valentim, B., Moreira, K., Predeanu, G., Slăvescu, V., Vasile, B., Nicoară, A.I., Borgese, L., Boniardi, G., Turolla, A., Canziani, R., Bontempi, E.: Simultaneous amorphous silica and phosphorus recovery from rice husk poultry litter ash. RSC Adv. 11, 8927–8939 (2021). https://doi.org/10.1039/d0ra10120f

    Article  Google Scholar 

  38. Bogush, A.A., Stegemann, J.A., Williams, R., Wood, I.G.: Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching. Fuel 211, 712–725 (2018). https://doi.org/10.1016/j.fuel.2017.09.103

    Article  Google Scholar 

  39. Zafar, Z.I., Anwar, M.M., Pritchard, D.W.: Optimisation of thermal beneficiation of a low grade dolomitic phosphate rock. Int. J. Miner. Process. 43, 123–131 (1995). https://doi.org/10.1016/0301-7516(94)00043-Y

    Article  Google Scholar 

  40. Steiner, G., Geissler, B., Watson, I., Mew, M.C.: Efficiency developments in phosphate rock mining over the last three decades. Resour. Conserv. Recycl. 105, 235–245 (2015). https://doi.org/10.1016/j.resconrec.2015.10.004

    Article  Google Scholar 

  41. Vassilev, S., Baxter, D., Andersen, L., Vassileva, C., Morgan, T.: An overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–33 (2011). https://doi.org/10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  42. Gumisiriza, R., Hawumba, J.F., Okure, M., Hensel, O.: Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol. Biofuels. 10, 11 (2017). https://doi.org/10.1186/s13068-016-0689-5

    Article  Google Scholar 

  43. Alsaffar, M.S., Jaafar, M.S., Kabir, N.A., Ahmad, N.: Distribution of 226 Ra, 232 Th, and 40 K in rice plant components and physico-chemical effects of soil on their transportation to grains. J. Radiat. Res. Appl. Sci. 8, 300–310 (2015). https://doi.org/10.1016/j.jrras.2015.04.002

    Article  Google Scholar 

  44. Zhou, W., Han, G., Liu, M., Song, C., Li, X.: Geochemical distribution characteristics of rare earth elements in different soil profiles in Mun River Basin. Sustain, Northeast Thailand (2020). https://doi.org/10.3390/su12020457

    Book  Google Scholar 

  45. Chen, H., Chen, Z., Chen, Z., Ma, Q., Zhang, Q.: Rare earth elements in paddy fields from eroded granite hilly land in a southern China watershed. PLoS ONE 14, e0222330 (2019)

    Article  Google Scholar 

  46. Tsumura, A., Yamasaki, S.: Behavior of uranium, thorium, and lanthanoids in paddy fields. Radioisot. 42, 265–272 (1993)

    Article  Google Scholar 

  47. Predeanu, G., Popescu, L., Abagiu, T., Panaitescu, C., Valentim, B., Guedes, A.: Characterisation of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic. Int. J. Coal Geol, SEM/EDS and Raman microspectroscopical methods (2016). https://doi.org/10.1016/j.coal.2016.08.004

    Book  Google Scholar 

  48. The European Parliament and the Council of the European Union: Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulation (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulat. (2019)

  49. Luyckx, L., De Leeuw, G.H.J., Caneghem, J. Van: Characterisation of poultry litter ash in view of its valorisation. Loizidou and Moustakas (2018)

  50. Council, E.: Directive 2008/98/CE of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union. L312, 1–59 (2008)

    Google Scholar 

  51. Chen, M., Graedel, T.E.: The potential for mining trace elements from phosphate rock. J. Clean. Prod. 91, 337–346 (2015). https://doi.org/10.1016/j.jclepro.2014.12.042

    Article  Google Scholar 

Download references

Funding

This research was under the scope of the Program ERA-MIN2 of the European Commission, Project DEASPHOR entitled “Design of a product for substitution of phosphate rocks” and funded by FCT (Portugal; Ref. ERA-MIN/0002/2017)—UEFISCDI 48/2018—CUP D81I18000190002.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AF, EB, LF, BV, AG, KM, ACS, RG, GP and MB. The first draft of the manuscript was written by AF, BV and EB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ario Fahimi.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organisation or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahimi, A., Bontempi, E., Fiameni, L. et al. Incineration of Aviary Manure: The Case Studies of Poultry Litter and Laying Hens Manure. Waste Biomass Valor 13, 3335–3357 (2022). https://doi.org/10.1007/s12649-022-01739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01739-4

Keywords

Profiles

  1. Ario Fahimi
  2. Elza Bontempi