Skip to main content
Log in

Ultrasonic Processing and Thermo-acoustic Analysis of Orange Peel Waste as Smart Acoustic Material: Waste and Biomass Valorization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A non-destructive technique like ultrasonication has played crucial role in fabrication of effective graded acoustic material from lignocellulosic waste material. The peculiar structural configurations inside the orange peel have attracted the researcher to fabricate green acoustic material as well as many technological products.The noise reduction property of orange peel fibres of different particle size has been improved considerably after ultrasonically mercerization of NaOH. Advanced characterization and measurement was performed to execute the orange peel as an advanced acoustic material with sound absorption coefficient 0.886 which is a Class-B noise absorber. The TGA and DSC analysis was performed with biodegradability 66.2% which is quite favourable from the environmental point of view. The data recorded from DSC analysis indicates the high resistance of temperature up to 371.51 °C. Thermal conductivity of the fabricated orange peel composite was measured by thermal analyzer with TS-3 sensor of accuracy ± 10%. The linear regression analysis of thermal conductivity and sound absorption coefficient are supporting experimental value making coefficient of correlation (R2) close to unit. The result confirms that ultrasonic treated composite has potential to absorb 88.6% of sound classifying it a Class-B noise absorber.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mohanty, A.K., Misra, M., Hinrichsen, G.: Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 276(1), 1–24 (2000)

    Article  Google Scholar 

  2. Bátori, V.: Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system. University of Borås, Faculty of Textiles, Engineering and Business (2018)

    Google Scholar 

  3. Satyanarayana, K.G., Sukumaran, K., Mukherjee, P.S., Pavitharan, C.P.: Natural fibre–polymer composites. Cem. Concr. Compos. 12, 117–136 (1990)

    Article  Google Scholar 

  4. Ayala, J.R., Montero, G., Coronado, M.A., García, C., Curiel-Alvarez, M.A., León, J.A., Sagaste, C.A., Montes, D.G.: Characterization of orange peel waste and valorization to obtain reducing sugars. Molecules 26(5), 1348 (2021)

    Article  Google Scholar 

  5. Zhang, J., Zhao, S.L., Guo, Y.: Repolypropylene block burn foam absorption sound on research. Noise Libration Control. 36, 3 (1997)

    Google Scholar 

  6. Papadopoulos, A.M.: State of the art in thermal insulation materials and aims for future developments. Energy Build. 37(1), 77 (2005)

    Article  Google Scholar 

  7. Soltani, P., Zerrebini, M.: The analysis of acoustical characteristics and sound absorption coefficient of woven fabrics. Text. Res. J. 82, 875–882 (2012)

    Article  Google Scholar 

  8. Zwikker, C., Kosten, C.W.: Sound Absorbing Materials. Elsevier, Amsterdam (1949)

    Google Scholar 

  9. Noman, M.T., Wiener, J., Saskova, J., Asraf, M.A., Vikova, M., Jamshaid, H., Kejzler, P.: In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 40, 41–56 (2018)

    Article  Google Scholar 

  10. Noman, M.T., Militký, J., Wiener, J., Šašková, J., Ashraf, M.A., Jamshaid, H., Azeem, M.: Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics 83, 203–213 (2018)

    Article  Google Scholar 

  11. Noman, M.T., Petrů, M., Militký, J., Azeem, M., Ashraf, M.A.: One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials. 13, 14 (2019)

    Article  Google Scholar 

  12. Nath, G., Paikaray, R.: Ultrasonic study of binary mixtures of acetone with chlorobenzene at different frequencies. Indian J. Phys. 83, 1309 (2009)

    Article  Google Scholar 

  13. Chen, C., Wang, Z., Zhang, Y., Bi, M., Nie, K., Wang, G.: Investigation of the hydrophobic and acoustic properties of bio windmill palm materials. Sci. Rep. 8, 13419 (2018)

    Article  Google Scholar 

  14. Goda, K., Sreekala, M.S., Gomes, A., Kaji, T., Ohgi, J.: Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Composites A 37(12), 2213–2220 (2006)

    Article  Google Scholar 

  15. Koruk, H., Genc, G.: 17-Acoustic and Mechanical Properties of Luffa Fiber-Reinforced Biocomposites, pp. 325–341. Woodhead Publishing, New York (2019)

    Google Scholar 

  16. Ďuriš, R., Labašová, E.: The design of an impedance tube and testing of sound absorption coefficient of selected materials. IOP Conf. Ser. 1050, 1 (2021)

    Article  Google Scholar 

  17. Li, M., Pu, Y., Thomas, M., Yoo, C.G., Ozcan, S., Deng, Y., Nelson, K., Ragauskas, A.J.: Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites B 200, 1 (2020)

    Google Scholar 

  18. Gheriany, I.A.E., Saqa, F.A.E., Amer, A.E.R., Hussein, M.: Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 59, 925–932 (2020)

    Article  Google Scholar 

  19. Mamtaz, H., Fouladi, M.H., Atabi, M.A., Namasivayam, S.N.: Acoustic absorption of natural fiber composites. J. Eng. 7, 1–11 (2016)

    Google Scholar 

  20. Blázquez, C.S., Nieto, I.M., Martín, A.F., Aguilera, D.G., García, P.C.: Comparative analysis of different methodologies used to estimate the ground thermal conductivity in low enthalpy geothermal systems. Energies 12, 1672 (2019)

    Article  Google Scholar 

  21. Gassan, J., Bledzki, A.K.: Possibilities for improving the mechanical properties of orange peel/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 59, 1303–1309 (1999)

    Article  Google Scholar 

  22. Yan, W., Li, N., Li, Y.: Effect of particle size on microstructure and strength of porous spinel ceramics prepared by pore-forming in situ technique. Bull. Mater. Sci. 34, 1109–1112 (2011)

    Article  Google Scholar 

  23. Koizumi, T., Tsujiuchi, N., Adachi, A.: The development of sound absorbing materials using natural bamboo fibers. High Perform. Struct. Mater. 4, 157–166 (2002)

    Google Scholar 

  24. Troedec, M., Sedan, D., Peyratout, C., Bonnet, J., Smith, A., Guinebretiere, R., Gloaguen, V., Krausz, P.: Influence of various chemical treatments on the composition and structure of hemp fibers. Composites A 39, 514–522 (2008)

    Article  Google Scholar 

  25. Vinay, C.H., Goudanavar, P., Acharya, A.: Development and characterization of pomegranate and orange fruit peel extract based silver nanoparticles. J Manmohan Memorial Inst Health Sci 4(1), 72 (2018)

    Article  Google Scholar 

  26. Asim, M., Paridah, M.T., Chandrasekar, M., Shahroze, R.M., Jawaid, M., Nasir, M., Siakeng, R.: Thermal stability of natural fibers and their polymer composites. Iran. Polym. J. 29, 625–648 (2020)

    Article  Google Scholar 

  27. Sinha, E., Rout, S.: Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull. Mater. Sci. 32, 65–76 (2009)

    Article  Google Scholar 

  28. Gholampour, A., Ozbakkaloglu, T.: A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 55, 829–892 (2019)

    Article  Google Scholar 

  29. Suantak, K., Murthy, S., Balo, S., Chandrajit, M., Shri, C.: Characterization of banana and orange peels: biosorption mechanism. Int. J. Sci. Technol. Manag. 2, 1–7 (2011)

    Google Scholar 

  30. Bbrigida, A.I.S., Calado, V.M.A., Goncalves, L.R.B., Coelho, M.A.Z.: Effect of chemical treatments on properties of green coconut fibre. Carbohydr. Polym. 79, 832–838 (2010)

    Article  Google Scholar 

  31. Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F.J.G., Mortensen, N., Willatzen, M., Sánchez-Morcillo, V.J.: Extraordinary absorption of sound in porous lamella-crystals. Sci. Rep. 4, 4674 (2014)

    Article  Google Scholar 

  32. Saleh, A., Ige, H.O., Akande, F.B., Yunusa, S.U., Atiku, M.M.: Potential of using agricultural waste (orange peel) and empty water sachets/bags in the production of sound absorption panel. IOP Conf. Ser. 445, 12038 (2020)

    Article  Google Scholar 

  33. Iqbal, M.N., Lee, Y.S., Zahid, L., Mezan, M.S.: A study of the anechoic performance of rice husk-based, geometrically tapered, hollow absorbers. Int. J Antennas Propag. 12, 1–9 (2014)

    Google Scholar 

  34. Zapata, B., Balmaseda, J., Fregoso-Israel, E., Torres-García, E.: Thermo-kinetics study of orange peel in air. J. Therm. Anal. Calorim. 98(1), 309–315 (2009)

    Article  Google Scholar 

  35. Tholkappiyan, E., Saravanan, D., Jagasthitha, R., Angeswari, T., Surya, V.T.: Modelling of sound absorption properties of sisal fibre reinforced paper pulp composites using regression model. Indian J. Fibre Text. Res. 40, 19–24 (2015)

    Google Scholar 

  36. Garside, P., Wyeth, P.: Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud. Conserv. 48, 269–275 (2003)

    Article  Google Scholar 

  37. Mandal, A., Chakrabarty, D.: Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 86(3), 1291–1299 (2011)

    Article  Google Scholar 

  38. Akinhanmi, T.F., Ofudje, E.A., Adeogun, A.I., Aina, P., Joseph, I.M.: Orange peel as low-cost adsorbent in the elimination of Cd(II) ion: kinetics, isotherm, thermodynamic and optimization evaluations. Bioresour. Bioprocess. 7(1), 2020 (2020)

    Article  Google Scholar 

  39. Noman, M.T., Petru, M.: Effect of sonication and nano TiO2 on thermo physiological comfort properties of woven fabrics. ACS Omega 5, 11481–11490 (2020)

    Article  Google Scholar 

  40. Wang, C., Zuo, Q., Lin, T., Anuar, N.I.S., Salleh, K.M., Gan, S., Yousfani, S.H.S., Zuo, H., Zakaria, S.: Predicting thermal conductivity and mechanical property of bamboo fibers/polypropylene nonwovens reinforced composites based on regression analysis. Int. Commun. Heat Mass Transf. 118, 104895 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Planning and Convergence Department, Government of Odisha for financial sustenance of the Project No. 2751 PC-INO-ACTI-0010-2018/P, as well as Vice-Chancellor VSSUT, Burla for laboratory facilities to execute the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.P., Nath, G. Ultrasonic Processing and Thermo-acoustic Analysis of Orange Peel Waste as Smart Acoustic Material: Waste and Biomass Valorization. Waste Biomass Valor 13, 2905–2916 (2022). https://doi.org/10.1007/s12649-022-01699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01699-9

Keywords

Navigation