Skip to main content
Log in

Role of the Thickness of Medium on Solid-State Anaerobic Digestion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In solid-state anaerobic digestion, the production of methane is limited compared to liquid-state anaerobic digestion. One of the possible reasons of this limitation could be the reduction of the diffusion of the molecules due to the high total solid content, creating local inhibitory environment. This study investigates the effect of the thickness of the reaction environment and by extension the effect of the diffusion on solid-state anaerobic digestion to evaluate this hypothesis. Two kind of anaerobic reactors with different thicknesses of a wheat-straw based medium (1.0 and 4.2 cm) were investigated for 33 days. The results showed an inhibition of methanogenesis for 4.2 cm height, which generated a gradient of propionate all along the medium thickness. This gradient was likely due to a local accumulation of H2, and a high partial pressure of hydrogen can result in an inhibition of the hydrolysis step. This result could explain why a high total solid content in solid-state anaerobic digestion results in an inhibition of the global anaerobic digestion, due to the local accumulation of inhibitory products. Therefore, mixing of solid-state anaerobic digester is mandatory to improve the methane production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Montero, B., Garcia-Morales, J.L., Sales, D., Solera, R.: Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresour. Technol. 99, 3233–3243 (2008). https://doi.org/10.1016/j.biortech.2007.05.063

    Article  Google Scholar 

  2. Pavlostathis, S.G., Giraldo-Gomez, G.: Kinetics of anaerobic treatment. Water Sci. Technol. 24, 35–59 (1991)

    Article  Google Scholar 

  3. Amani, T., Nosrati, M., Sreekrishnan, T.: Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ. Rev. 18, 255–278 (2010). https://doi.org/10.1139/A10-011

    Article  Google Scholar 

  4. De Baere, L., Mattheeuws, B., Velghe, F.: State of the art of anaerobic digestion in Europe. In: 12th World Congress on Anaerobic Digestion, p. 32. (2010)

  5. André, L., Pauss, A., Ribeiro, T.: Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour. Technol. 247, 1027–1037 (2018). https://doi.org/10.1016/j.biortech.2017.09.003

    Article  Google Scholar 

  6. Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgénes, J.-P., Steyer, J.-P., Escudié, R.: Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 111, 55–61 (2012). https://doi.org/10.1016/j.biortech.2012.01.174

    Article  Google Scholar 

  7. Motte, J.-C.C., Escudié, R., Bernet, N., Delgenes, J.-P.P., Steyer, J.-P.P., Dumas, C., Delgénes, J.-P., Steyer, J.-P.P., Dumas, C., Delgenes, J.-P.P., Steyer, J.-P.P., Dumas, C.: Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresour. Technol. 144, 141–148 (2013). https://doi.org/10.1016/j.biortech.2013.06.057

    Article  Google Scholar 

  8. Bollon, J., Benbelkacem, H., Bayard, R., Gourdon, R., Buffière, P.: Essais et modélisation de l’inhibition de la dégradation du propionate par les acides gras volatils en digestion anaérobie par voie sèche. Déchets Sci. Tech. (2015). https://doi.org/10.4267/dechets-sciences-techniques.3230

    Article  Google Scholar 

  9. Zhou, M., Yang, H., Zheng, D., Pu, X., Liu, Y., Wang, L., Zhang, Y., Deng, L.: Methanogenic activity and microbial communities characteristics in dry and wet anaerobic digestion sludges from swine manure. Biochem. Eng. J. 152, 107390 (2019). https://doi.org/10.1016/j.bej.2019.107390

    Article  Google Scholar 

  10. Pastor-Poquet, V., Papirio, S., Trably, E., Rintala, J., Escudié, R., Esposito, G.: High-solids anaerobic digestion requires a trade-off between total solids, inoculum-to-substrate ratio and ammonia inhibition. Int. J. Environ. Sci. Technol. 16, 7011–7024 (2019). https://doi.org/10.1007/s13762-019-02264-z

    Article  Google Scholar 

  11. Veluchamy, C., Kalamdhad, A.S.: A mass diffusion model on the effect of moisture content for solid-state anaerobic digestion. J. Clean. Prod. 162, 371–379 (2017). https://doi.org/10.1016/j.jclepro.2017.06.099

    Article  Google Scholar 

  12. Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., Buffière, P.: Towards optimization of the total solid content in high-solid (dry) municipal solid waste digestion. Chem. Eng. J. 273, 261–267 (2015). https://doi.org/10.1016/j.cej.2015.03.048

    Article  Google Scholar 

  13. Garcia-Bernet, D., Buffière, P., Latrille, E., Steyer, J.-P., Escudié, R.: Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem. Eng. J. 172, 924–928 (2011). https://doi.org/10.1016/j.cej.2011.07.003

    Article  Google Scholar 

  14. Bollon, J., Benbelkacem, H., Gourdon, R., Buffière, P.: Measurement of diffusion coefficients in dry anaerobic digestion media. Chem. Eng. Sci. 89, 115–119 (2013). https://doi.org/10.1016/j.ces.2012.11.036

    Article  Google Scholar 

  15. Staley, B.F., de Los Reyes, F.L., Barlaz, M.: a: Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl. Environ. Microbiol. 77, 2381–2391 (2011). https://doi.org/10.1128/AEM.02349-10

    Article  Google Scholar 

  16. Ting, H.N.J., Lin, L., Cruz, R.B., Chowdhury, B., Karidio, I., Zaman, H., Dhar, B.R.: Transitions of microbial communities in the solid and liquid phases during high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 317, 123951 (2020). https://doi.org/10.1016/j.biortech.2020.123951

    Article  Google Scholar 

  17. Martin, D.J.: The site of reaction in solid-state digestion: a new hypothesis. Trans. IChemE B 79, 29–37 (2001)

    Article  Google Scholar 

  18. Vavilin, V.A., Angelidaki, I.: Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnol. Bioeng. 89, 113–22 (2005). https://doi.org/10.1002/bit.20323

    Article  Google Scholar 

  19. Lesteur, M., Latrille, E., Maurel, V.B., Roger, J.M., Gonzalez, C., Junqua, G., Steyer, J.P.: First step towards a fast analytical method for the determination of Biochemical Methane Potential of solid wastes by near infrared spectroscopy. Bioresour. Technol. 102, 2280–2288 (2011). https://doi.org/10.1016/j.biortech.2010.10.044

    Article  Google Scholar 

  20. Motte, J.-C., Trably, E., Escudié, R., Hamelin, J., Steyer, J.-P., Bernet, N., Delgénes, J.-P., Dumas, C.: Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 6, 164 (2013)

    Article  Google Scholar 

  21. Liew, L.N., Shi, J., Li, Y.: Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy (2012). https://doi.org/10.1016/j.biombioe.2012.09.014

    Article  Google Scholar 

  22. Cazier, E.A., Trably, E., Steyer, J.P.P., Escudie, R., Escudié, R.: Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresour. Technol. 190, 106–113 (2015). https://doi.org/10.1016/j.biortech.2015.04.055

    Article  Google Scholar 

  23. de Bok, F.A.M., Plugge, C.M., Stams, A.J.: Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 38, 1368–1375 (2004). https://doi.org/10.1016/j.watres.2003.11.028

    Article  Google Scholar 

  24. Thauer, R.K., Jungermann, K., Decker, K., Pi, P.P.H.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 809 (1977)

    Article  Google Scholar 

  25. Xu, F., Wang, Z.-W., Tang, L., Li, Y.: A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass. Bioresour. Technol. 167C, 178–185 (2014). https://doi.org/10.1016/j.biortech.2014.05.114

    Article  Google Scholar 

  26. Veeken, A., Kalyunzhnyi, S., Scharff, H., Hamelers, B., Kalyuzhnyi, S., Kalyunzhnyi, S., Scharff, H., Hamelers, B., Kalyuzhnyi, S.: Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 06, 1076–1081 (2000)

    Article  Google Scholar 

  27. Siegert, I., Banks, C.J.: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 40, 3412–3418 (2005). https://doi.org/10.1016/j.procbio.2005.01.025

    Article  Google Scholar 

Download references

Funding

This work was supported by the French Environment and Energy Management Agency (ADEME).

Author information

Authors and Affiliations

Authors

Contributions

EAC did the experimentation and the writing of the paper, ET, RE supervised and reviewed the paper, JPS reviewed the paper.

Corresponding author

Correspondence to E. A. Cazier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazier, E.A., Trably, E., Steyer, J.P. et al. Role of the Thickness of Medium on Solid-State Anaerobic Digestion. Waste Biomass Valor 13, 2871–2880 (2022). https://doi.org/10.1007/s12649-022-01698-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01698-w

Keywords

Navigation