Skip to main content
Log in

Use of Lignosulfonate from Pulping Industrial Waste as a Potential Material for Proton Exchange Membrane in Fuel Cells

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bio-degradable natural materials, instead of synthetic polymers, for value-added applications have gained much attention due to the strong demand for green development. As a waste of pulp industry, converting lignosulfonate for various products has been a hot research topic in material field. Herein, a proton exchange membrane (PEM) for fuel cell is prepared by blending sulfonated poly(ether ether ketone) with lignosulfonate (LS) from pulping waste. The performance of as-prepared membrane is studied. The results indicate that the proton conductivity of the prepared membrane increases with the content of LS increasing in membrane. For as-prepared membrane containing 15% LS, the proton conductivity is remarkably higher than that of membrane fabricated by sulfonated poly(aryl ether ketone) at the same test conditions. Nevertheless, the physical strength decreases as the LS content increases. Comprehensively, the blending membrane containing 15% LS can satisfy the PEM application, which implies that LS should be a potential candidate for PEM application in a low temperature range.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akay, R.G., Ata, K.C., Kadioğlu, T., Çelik, C.: Evaluation of SPEEK/PBI blend membranes for possible direct borohydride fuel cell (DBFC) application. Int. J. Hydrogen Energy 43, 18702–18711 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.129

    Article  Google Scholar 

  2. Bano, S., Negi, Y.S., Illathvalappil, R., Kurungot, S., Ramya, K.: Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochim. Acta 293, 260–272 (2019). https://doi.org/10.1016/j.electacta.2018.10.029

    Article  Google Scholar 

  3. Han, J.S., Kim, K.Y., Kim, J.H., Kim, S.J., Choi, S.W., Lee, H.H., Kim, J.J., Kim, T.H., Sung, Y.E., Lee, J.C.: Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J. Membr. Sci. 579, 70–78 (2019). https://doi.org/10.1016/j.memsci.2019.02.048

    Article  Google Scholar 

  4. Liu, X.P., Zhang, Y.F., Chen, Y.Z., Li, C.C., Dong, J.M., Zhang, Q., Wang, J.Y., Yang, Z.H., Cheng, H.S.: A superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells. J. Membr. Sci. 544, 58–67 (2017). https://doi.org/10.1016/j.memsci.2017.09.013

    Article  Google Scholar 

  5. Zhao, G.D., Xu, X.L., Shi, L., Cheng, B.W., Zhuang, X.P., Yin, Y.: Biofunctionalized nanofiber hybrid proton exchange membrane based on acid-base ion-nanochannels with superior proton conductivity. J. Power Sources 452, 227839 (2020). https://doi.org/10.1016/j.jpowsour.2020.227839

    Article  Google Scholar 

  6. Al-Batty, S., Dawson, C., Shanmukham, S.P., Roberts, E.P.L., Holmes, S.M.: Improvement of direct methanol fuel cell performance using a novel mordenite barrier layer. J. Mater. Chem. 4, 10850–10857 (2016). https://doi.org/10.1039/C6TA03485C

    Article  Google Scholar 

  7. Yuan, Z.Z., Zhang, H.M., Li, X.F.: Ion conducting membranes for aqueous flow battery systems. Chem. Commun. 54, 7570–7588 (2018). https://doi.org/10.1039/C8CC03058H

    Article  Google Scholar 

  8. Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., McGrath, J.E.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004). https://doi.org/10.1021/cr020711a

    Article  Google Scholar 

  9. Na, R.K., Lee, S.Y., Dong, W.S., Hwang, D.S., Kang, H.L., Cho, D.H., Ji, H.K., Lee, Y.M.: Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes. J. Power Sources 307, 834–843 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.051

    Article  Google Scholar 

  10. Ni, C.J., Wei, Y.C., Zhao, Q., Liu, B.J., Sun, Z.Y., Gu, Y., Zhang, M.Y., Hu, W.: Novel proton exchange membrane based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose. Appl. Surf. Sci. 434, 163–175 (2018). https://doi.org/10.1016/j.apsusc.2017.09.094

    Article  Google Scholar 

  11. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 35, 9349–9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017

    Article  Google Scholar 

  12. Park, C.H., Lee, S.Y., Hwang, D.S., Shin, D.W., Cho, D.H., Lee, K.H., Kim, T.W., Kim, T.W., Lee, M., Kim, D.S., Doherty, C.M., Thornton, A.W., Hill, A.J., Guiver, M.D., Lee, Y.M.: Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016). https://doi.org/10.1038/nature17634

    Article  Google Scholar 

  13. Wang, C., Zhou, Y., Shen, B., Zhao, X., Li, J., Ren, Q.: Proton-conducting poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups by a convenient and mild post-sulfonation. Polym. Chem. 9, 4984–4993 (2018). https://doi.org/10.1039/C8PY00996A

    Article  Google Scholar 

  14. Sun, C.Y., Negro, E., Vezzù, K., Pagot, G., Cavinato, G., Nale, A., Bang, Y.H., Noto, V.: Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 309, 311–325 (2019). https://doi.org/10.1016/j.electacta.2019.03.056

    Article  Google Scholar 

  15. Sutradhar, S.C., Yoon, S.J., Ryu, T., Jin, L., Zhang, W., Kim, W., Jang, H.: Branched sulfonamide-based proton exchange polymer membranes from poly(phenylenebenzopheneone)s for fuel cell applications. Membranes 11, 168 (2021). https://doi.org/10.3390/membranes11030168

    Article  Google Scholar 

  16. Charradi, K., Ahmed, Z., Aranda, P., Chtourou, R.: Silica/montmorillonite nanoarchitectures and layered double hydroxide SPEEK based composite membrane for fuel cells applications. Appl. Clay Sci. 174, 77–85 (2019). https://doi.org/10.1016/j.clay.2019.03.027

    Article  Google Scholar 

  17. Devrim, Y., Albostan, A.: Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane. Int. J. Hydrogen Energy 40, 15328–15335 (2015). https://doi.org/10.1016/j.ijhyhdene.2015.02.0978

    Article  Google Scholar 

  18. Nagarale, R.K., Gohil, G.S., Shahi, V.K.: Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 119, 97–130 (2006). https://doi.org/10.1016/j.cis.2005.09.005

    Article  Google Scholar 

  19. Peckham, T.J., Holdcroft, S.: Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 22, 4667–4690 (2010). https://doi.org/10.1002/adma.201001164

    Article  Google Scholar 

  20. Tang, Z., Keith, R.E., Aaron, D.S., Lawton, J.S., Papandrew, A.B., Zawodzinski, T.A.: Proton exchange membrane performance characterization in VRFB. ECS Trans. 41, 25–34 (2012). https://doi.org/10.1149/1.3697451

    Article  Google Scholar 

  21. Boaretti, C., Pasquini, L., Sood, R., Giancola, S., Donnadio, A., Roso, M., Modesti, M., Cavaliere, S.: Mechanically stable nanofibrous sPEEK/Aquivion composite membranes for fuel cell applications. J. Membr. Sci. 545, 66–74 (2018). https://doi.org/10.1016/j.memsci.2017.09.055

    Article  Google Scholar 

  22. da Trindade, L.G., Zanchet, L., Martins, P.C., Borba, K.M.N., Santos, R.D.M., da Paiva, R.S., Vermeersch, L.A.F., Ticianelli, E.A., de Souza, M.O., Martini, E.M.A.: The influence of ionic liquids cation on the properties of sulfonated poly(ether ether ketone)/polybenzimidazole blends applied in PEMFC. Polymer 179, 121723 (2019). https://doi.org/10.1016/j.polymer.2019.121723

    Article  Google Scholar 

  23. Shabani, M., Younesi, H., Rahimpour, A., Rahimnejad, M.: Upgrading the electrochemical performance of graphene oxide-blended sulfonated polyetheretherketone composite polymer electrolyte membrane for microbial fuel cell application. Biocatal. Agric. Biotechnol. 22, 101369 (2019). https://doi.org/10.1016/j.bcab.2019.101369

    Article  Google Scholar 

  24. Ayyaru, S., Ahn, Y.H.: Enhanced performance of sulfonated GO in SPEEK proton-exchange membrane for microbial fuel-cell application. J. Environ. Eng. 147, 04020153 (2021). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001848

    Article  Google Scholar 

  25. Gouda, M.H., Konsowa, A.H., Farag, H.A., Elessawy, N.A., Tamer, T.M., Mohy Eldin, M.S.: Development novel eco-friendly proton exchange membranes doped with nano sulfated zirconia for direct methanol fuel cells. J. Polym. Res. 28, 263 (2021). https://doi.org/10.1007/s10965-021-02628-5

    Article  Google Scholar 

  26. Benavente, J., Garcia, J.M., Riley, R., Lozanod, A.E., de Abajo, J.: Sulfonated poly(ether ether sulfones) characterization and study of dielectrical properties by impedance spectroscopy. J. Membr. Sci. 175, 43–52 (2000). https://doi.org/10.1016/S0376-7388(00)00395-1

    Article  Google Scholar 

  27. Wiles, K.B., de Diego, C.M., de Abajo, J., McGrath, J.E.: Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: synthesis, fabrication and characterization of membranes and membrane–electrode assemblies for fuel cell applications. J. Membr. Sci. 294, 22–29 (2007). https://doi.org/10.1016/j.memsci.2007.01.036

    Article  Google Scholar 

  28. Yaroslavtsev, A.B., Nikonenko, V.V.: Ion-exchange membrane materials: properties, modification, and practical application. Nanotechnol. Russ. 4(3–4), 137–159 (2009). https://doi.org/10.1134/S199507800903001X

    Article  Google Scholar 

  29. Lakshmi, V.V., Choudhary, V., Varma, I.K.: Sulphonated poly(ether ether ketone): synthesis and characterisation. Macromol. Symp. 210, 21–29 (2004). https://doi.org/10.1002/masy.200450603

    Article  Google Scholar 

  30. Chen, F., Dong, W.J., Lin, F., Ren, W.J., Ma, X.Y.: Composite proton exchange membrane with balanced proton conductivity and swelling ration improved by gradient-distributed POSS nanospheres. Compos. Commun. 24, 100676 (2021). https://doi.org/10.1016/j.coco.2021.100676

    Article  Google Scholar 

  31. Ling, X., Jia, C.K., Liu, J.G., Yan, C.W.: Preparation and characterization of sulfonated poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membrane for vanadium redox flow battery. J. Membr. Sci. 415–416, 306–312 (2012). https://doi.org/10.1016/j.memsci.2012.05.014

    Article  Google Scholar 

  32. Gouda, M.H., Elnouby, M., Aziz, A.N., Youssef, M.E., Santos, E.D.M.F., Elessawy, N.A.: Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: effect of double-layer electrodes and gas diffusion layer. Front. Mater. 6, 337 (2020). https://doi.org/10.3389/fmats.2019.00337

    Article  Google Scholar 

  33. Gouda, M.H., Elessawy, N.A., Toghan, A.: Development of effectively costed and performant novel cation exchange ceramic nanocomposite membrane based sulfonated PVA for direct borohydride fuel cells. J. Ind. Eng. Chem. 100, 212–219 (2021). https://doi.org/10.1016/j.jiec.2021.05.021

    Article  Google Scholar 

  34. Wang, G.H., Liu, Q.J., Chang, M.M., Jang, J., Sui, W.J., Si, C.L., Ni, Y.H.: Novel Fe3O4@lignosulfonate/phenolic core–shell microspheres for highly efficient removal of cationic dyes from aqueous solution. Ind. Crops Prod. 127, 110–118 (2019). https://doi.org/10.1016/j.indcrop.2018.10.056

    Article  Google Scholar 

  35. Zhang, H., Jia, D.D., Yang, Z.W., Yu, F.Q., Su, Y.L., Wang, D.J., Shen, Q.: Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode. Carbon 122, 547–555 (2017). https://doi.org/10.1016/j.carbon.2017.07.004

    Article  Google Scholar 

  36. Colombo, A., Geiker, M., Justnes, H., Lauten, R.A., De Weerdt, K.: The effect of calcium lignosulfonate on ettringite formation in cement paste. Cem. Concr. Res. 107, 188–205 (2018). https://doi.org/10.1016/j.cemconres.2018.02.021

    Article  Google Scholar 

  37. Qin, Y.L., Yuan, M.J., Hu, Y.B., Lu, Y.Q., Lin, W.J., Ma, Y.F., Lin, X.L., Wang, T.J.: Preparation and interaction mechanism of nano disperse dye using hydroxypropyl sulfonated lignin. Int. J. Biol. Macromol. 152, 280–287 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.261

    Article  Google Scholar 

  38. Chen, S.Y., Liu, H.J., Sun, H., Yan, X., Wang, G.H., Zhou, Y.J., Zhang, J.N.: Synthesis and physiochemical performance evaluation of noval sulphobetaine zwitterionic surfactants from lignin for enhanced oil recovery. J. Mol. Liq. 249, 73–82 (2018). https://doi.org/10.1016/j.molliq.2017.11.021

    Article  Google Scholar 

  39. Wang, Y.Y., Zhu, L.L., Wang, X.H., Zheng, W., Hao, C., Jiang, C.L., Wu, J.B.: Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes. J. Ind. Eng. Chem. 61, 321–330 (2018). https://doi.org/10.1016/j.jiec.2017.12.030

    Article  Google Scholar 

  40. MuthuLakshmi, R.T.S., Choudhary, V., Varma, I.K.: Sulfonated poly(ether ether ketone): synthesis and characterization. J. Mater. Sci. 40, 629–636 (2005). https://doi.org/10.1007/s10853-005-6300-2

    Article  Google Scholar 

  41. Xing, P., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Wang, K., Kaliaguine, S.: Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229, 95–106 (2004). https://doi.org/10.1016/j.memsci.2003.09.019

    Article  Google Scholar 

  42. Luo, T.W., Zhang, Y.X., Xu, H.L., Zhang, Z.Y., Fu, F.Y., Gao, S.T., Ouadah, A., Dong, Y., Wang, S., Zhu, C.J.: Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes. J. Membr. Sci. 514, 527–536 (2016). https://doi.org/10.1016/j.memsci.2016.04.071

    Article  Google Scholar 

  43. Lima, R.B., Raza, R., Qin, H.Y., Li, J.B., Lindström, M.E., Zhu, B.: Direct lignin fuel cell for power generation. RSC Adv. 3, 5083–5089 (2013). https://doi.org/10.1039/c3ra23418e

    Article  Google Scholar 

  44. Kim, A.R., Vinothkannan, M., Yoo, D.J.: Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC). Int. J. Hydrogen Energy 42, 4349–4365 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.161

    Article  Google Scholar 

  45. Meng, X.Y., Li, C.J., Wen, J.H., Ye, H.M., Cong, C.B., Zhou, Q., Xu, L.X.: The effect of amino-modified mesoporous silica nanospheres on properties of SPEEK/HPW@mesoporous silica nanoparticles proton exchange membrane. J. Chin. Chem. Soc. 68, 1197–1204 (2021). https://doi.org/10.1002/jccs.202000535

    Article  Google Scholar 

  46. Esmaeilzadeh, Z., Karimi, M., Shoushtari, A.M., Javanbakht, M.: Linking interfacial energies with proton conductivity in sulfonated poly(ether ether ketone) nanocomposite. Polymer 230, 124067 (2021). https://doi.org/10.1016/j.polymer.2021.124067

    Article  Google Scholar 

  47. Xing, P.X., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Kaliaguine, S.: Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci. A 42, 2866–2876 (2004). https://doi.org/10.1002/pola.20152

    Article  Google Scholar 

  48. Zhao, G.D., Xu, X.L., Di, Y.B., Wang, H., Cheng, B., Shi, L., Zhu, Y., Zhuang, X.P., Yin, Y.: Amino acid clusters supported by cellulose nanofibers for proton exchange membranes. J. Power Sources 438, 227035 (2019). https://doi.org/10.1016/j.jpowsour.2019.227035

    Article  Google Scholar 

  49. Hu, F.Q., Zhong, F., Wen, S., Zheng, G.W., Gong, C.L., Qin, C.Q., Liu, H.: Preparation and properties of chitosan/organic-modified attapulgite composite proton exchange membranes for fuel cell application. Polym. Compos. 41, 2254–2262 (2020). https://doi.org/10.1002/pc.25536

    Article  Google Scholar 

  50. Gupta, D., Madhukar, A., Choudhary, V.: Effect of functionality of polyhedral oligomeric silsesquioxane [POSS] on the properties of sulfonated poly(ether ether ketone) [SPEEK] based hybrid nanocomposite proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 38, 12817–12829 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hunan Liang or Dayu Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Li, Y., Liang, H. et al. Use of Lignosulfonate from Pulping Industrial Waste as a Potential Material for Proton Exchange Membrane in Fuel Cells. Waste Biomass Valor 13, 2861–2869 (2022). https://doi.org/10.1007/s12649-022-01696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01696-y

Keywords

Navigation