Skip to main content

Advertisement

Log in

Hydrogen Rich Product Gas from Air–Steam Gasification of Indian Biomasses with Waste Engine Oil as Binder

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Production of hydrogen rich product gas through thermochemical energy conversion having the biomass gasification is making significant inroads for green hydrogen fuel generation. In the present work, detailed physical and chemical characterization, air and air–steam biomass gasification of four biomasses i.e., Kasai Saw Dust, Lemon Grass, Wheat Straw and Pigeon Pea Seed Coat from four different group of biomass production system at different steam to biomass ratio, equivalence ratio and with and without binder is analysed. Waste engine oil as an additive/binder is used. Experimental investigation for air and air–steam gasification is applied and compared. Product gas constituents, hydrogen production is examined with different steam to biomass (S/B) ratio and equivalence ratio. The equivalence ratio varies from 0.20 to 0.40 and the S/B ratio between 0 and 4. The waste engine oil (5 and 10 wt%) is mixed with the biomass during palletization. Results show maximum H2 production and HCV of product gas at an air to fuel of 0.26 and 2.4 steam to biomass ratio. This study considers the rarely studied Indian biomasses with waste engine oil as an additive for hydrogen-rich product gas production having small scale biomass gasifier.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files]. If reader still need certain data which are not included in manuscript, are available from the corresponding author on reasonable request.

Abbreviations

A:

Air

a, b, c, d and e:

Coefficients of elements of the product.

AR:

Pre-exponential factor, k mol m−3 s−1

C:

Carbon

Ch4 :

Methane

CO:

Carbon mono oxide

CRF :

Char reactivity factor

ER:

Equivalence ratio

ERi :

Activation energy, J mol−1

F:

Fuel

FC:

Fixed carbon

H:

Hydrogen

hfg:

Enthalpy difference between gas and fluid

HCV:

Higher calorific value

HHV:

Higher heating value

K:

Equilibrium constants

LCV:

Lower calorific value

LHV:

Lower heating value

ln:

Natural logarithm

m:

Quantity of oxygen per k mol of biomass

M:

Molar mass

MC:

Moisture content

ni :

Number of species in mole

ntot :

Total number of all species in product gas in moles

O:

Oxygen

\({\mathrm{Q}}_{\mathrm{PG}}\) :

Calorific value of product gas

r:

Quantity of water per k mol of biomass

R:

Gas constant

S:

Sulphur

S/B:

Steam to biomass ratio

T:

Temperature

U:

Constant of integration

V:

Constant

VM:

Volatile matter

W, X, Y, Z:

Heat capacities

WEO:

Waste engine oil

∆G0 :

Standard Gibbs function of formation

ΔH0 :

Heat of formation

References

  1. Trninić, M., Stojiljković, D., Manić, N., Skreiberg, Ø., Wang, L., Jovović, A.: A mathematical model of biomass downdraft gasification with an integrated pyrolysis model. Fuel 265, 116867 (2020). https://doi.org/10.1016/j.fuel.2019.116867

    Article  Google Scholar 

  2. Basu, P.: Biomass gasification and pyrolysis: practical design and theory. Elsevier, Amsterdam (2013)

    Google Scholar 

  3. Hinz, R., et al.: Agricultural development and land use change in India: a scenario analysis of trade-offs between UN sustainable development goals (SDGs). Earth’s Future (2020). https://doi.org/10.1029/2019EF001287

    Article  Google Scholar 

  4. Cardoen, D., Joshi, P., Diels, L., Sarma, P.M., Pant, D.: Agriculture biomass in India: Part 1. Estimation and characterization. Resour. Conserv. Recycl. 102, 39–48 (2015). https://doi.org/10.1016/j.resconrec.2015.06.003

    Article  Google Scholar 

  5. Kumar, G., et al.: Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Convers. Biorefinery (2020). https://doi.org/10.1007/s13399-020-01127-9

    Article  Google Scholar 

  6. Abd El-Sattar, H., Kamel, S., Tawfik, M.A., Vera, D., Jurado, F.: Modeling and simulation of corn stover gasifier and micro-turbine for power generation. Waste Biomass Valoriz. 10(10), 3101–3114 (2019). https://doi.org/10.1007/s12649-018-0284-z

    Article  Google Scholar 

  7. Littlejohns, J.V., Butler, J., Luque, L., Kannangara, M., Totolo, S.: Analysis of the performance of an integrated small-scale biomass gasification system in a Canadian context. Biomass Convers. Biorefinery 10(2), 311–323 (2020). https://doi.org/10.1007/s13399-019-00442-0

    Article  Google Scholar 

  8. Patuzzi, F., et al.: State-of-the-art of small-scale biomass gasification systems: an extensive and unique monitoring review. Energy 223, 120039 (2021). https://doi.org/10.1016/j.energy.2021.120039

    Article  Google Scholar 

  9. Susastriawan, A.A.P., Saptoadi, H., Purnomo: Small-scale downdraft gasifiers for biomass gasification: a review. Renew. Sustain. Energy Rev. 76, 989–1003 (2017). https://doi.org/10.1016/j.rser.2017.03.112

    Article  Google Scholar 

  10. Keche, A.J., Gaddale, A.P.R., Tated, R.G.: Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technol. Environ. Policy 17(2), 465–473 (2015). https://doi.org/10.1007/s10098-014-0804-x

    Article  Google Scholar 

  11. Chaves, L.I., et al.: Small-scale power generation analysis: downdraft gasifier coupled to engine generator set. Renew. Sustain. Energy Rev. 58, 491–498 (2016). https://doi.org/10.1016/j.rser.2015.12.033

    Article  Google Scholar 

  12. Skoulou, V., Koufodimos, G., Samaras, Z., Zabaniotou, A.: Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas. Int. J. Hydrogen Energy 33(22), 6515–6524 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.074

    Article  Google Scholar 

  13. Pang, Y., Shen, S., Chen, Y.: High temperature steam gasification of corn straw pellets in downdraft gasifier: preparation of hydrogen-rich gas. Waste Biomass Valoriz. 10(5), 1333–1341 (2019). https://doi.org/10.1007/s12649-017-0143-3

    Article  Google Scholar 

  14. Trabelsi, A.B.H., et al.: Hydrogen-rich syngas production from gasification and pyrolysis of solar dried sewage sludge: experimental and modeling investigations. Biomed Res. Int. (2017). https://doi.org/10.1155/2017/7831470

    Article  Google Scholar 

  15. Lv, P., Yuan, Z., Ma, L., Wu, C., Chen, Y., Zhu, J.: Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renew. Energy 32(13), 2173–2185 (2007). https://doi.org/10.1016/j.renene.2006.11.010

    Article  Google Scholar 

  16. Adefeso, I.B., Rabiu, A.M., Ikhu-Omoregbe, D.I.: Refuse-derived fuel gasification for hydrogen production in high temperature proton exchange membrane fuel cell base CHP system. Waste Biomass Valoriz. 6(6), 967–974 (2015). https://doi.org/10.1007/s12649-015-9415-y

    Article  Google Scholar 

  17. Valizadeh, S., et al.: Biohydrogen production from catalytic conversion of food waste via steam and air gasification using eggshell- and homo-type Ni/Al2O3 catalysts. Bioresour. Technol. 320, 124313 (2021). https://doi.org/10.1016/j.biortech.2020.124313

    Article  Google Scholar 

  18. Atnaw, S.M., Sulaiman, S.A., Yusup, S.: Syngas production from downdraft gasification of oil palm fronds. Energy 61, 491–501 (2013). https://doi.org/10.1016/j.energy.2013.09.039

    Article  Google Scholar 

  19. Rakesh, N., Dasappa, S.: Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system. Energy Convers. Manag. 167, 134–146 (2018). https://doi.org/10.1016/j.enconman.2018.04.092

    Article  Google Scholar 

  20. Dutta, P.P., Pandey, V., Das, A.R., Sen, S., Baruah, D.C.: Down draft gasification modelling and experimentation of some indigenous biomass for thermal applications. Energy Procedia 54(03712), 21–34 (2014). https://doi.org/10.1016/j.egypro.2014.07.246

    Article  Google Scholar 

  21. Sheth, P.N., Babu, B.V.: Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresour. Technol. 100(12), 3127–3133 (2009). https://doi.org/10.1016/j.biortech.2009.01.024

    Article  Google Scholar 

  22. Keche, A.J.R., Amba Prasad Rao, G.: Experimental evaluation of a 35 kVA downdraft gasifier. Front. Energy 73(3), 300–306 (2013). https://doi.org/10.1007/s11708-013-0247-9

    Article  Google Scholar 

  23. Prasad, L., Salvi, B.L., Kumar, V.: Thermal degradation and gasification characteristics of Tung Shells as an open top downdraft wood gasifier feedstock. Clean Technol. Environ. Policy 17(6), 1699–1706 (2015). https://doi.org/10.1007/s10098-014-0891-8

    Article  Google Scholar 

  24. Prasad, L.: Experimental study on gasification of Jatropha shells in a downdraft open top gasifier. Waste Biomass Valoriz. 6(1), 117–122 (2015). https://doi.org/10.1007/s12649-014-9321-8

    Article  Google Scholar 

  25. Prasad, L., Subbarao, P.M.V., Subrahmanyam, J.P.: An experimental investigation on gasification characteristic of Pongamia residue (shell and de-oiled cake) as a source of energy for rural areas. Waste Biomass Valoriz. 8(3), 987–997 (2017). https://doi.org/10.1007/s12649-016-9631-0

    Article  Google Scholar 

  26. Siddiqui, H., Thengane, S.K., Sharma, S., Mahajani, S.M.: Revamping downdraft gasifier to minimize clinker formation for high-ash garden waste as feedstock. Bioresour. Technol. 266, 220–231 (2018). https://doi.org/10.1016/j.biortech.2018.06.086

    Article  Google Scholar 

  27. González, W.A., Zimmermann, F., Pérez, J.F.: Thermodynamic assessment of the fixed-bed downdraft gasification process of fallen leaves pelletized with glycerol as binder. Case Stud. Thermal Eng. 14, 100480 (2019). https://doi.org/10.1016/j.csite.2019.100480

    Article  Google Scholar 

  28. Shone, C.M., Jothi, T.J.S.: Preparation of gasification feedstock from leafy biomass. Environ. Sci. Pollut. Res. 23(10), 9364–9372 (2016). https://doi.org/10.1007/s11356-015-5167-2

    Article  Google Scholar 

  29. Nobre, C., Longo, A., Vilarinho, C., Gonçalves, M.: Gasification of pellets produced from blends of biomass wastes and refuse derived fuel chars. Renew. Energy 154, 1294–1303 (2020). https://doi.org/10.1016/j.renene.2020.03.077

    Article  Google Scholar 

  30. Panwar, N.L., Rathore, N.S., Kurchania, A.K.: Experimental investigation of open core downdraft biomass gasifier for food processing industry. Mitig. Adapt. Strateg. Global Change 14(6), 547–556 (2009). https://doi.org/10.1007/s11027-009-9173-x

    Article  Google Scholar 

  31. Fortunato, B., Brunetti, G., Camporeale, S.M., Torresi, M., Fornarelli, F.: Thermodynamic model of a downdraft gasifier. Energy Convers. Manag. 140, 281–294 (2017). https://doi.org/10.1016/j.enconman.2017.02.061

    Article  Google Scholar 

  32. Fani, M., HaddadzadehNiri, M., Joda, F.: A simplified dynamic thermokinetic-based model of wood gasification process. Process Integr. Optim. Sustain. 2(3), 269–279 (2018). https://doi.org/10.1007/s41660-018-0042-5

    Article  Google Scholar 

  33. Zainal, Z.A., Ali, R., Lean, C.H., Seetharamu, K.N.: Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag. 42(12), 1499–1515 (2001). https://doi.org/10.1016/S0196-8904(00)00078-9

    Article  Google Scholar 

  34. Huang, H.J., Ramaswamy, S.: Modeling biomass gasification using thermodynamic equilibrium approach. Appl. Biochem. Biotechnol. 154(1–3), 193–204 (2009). https://doi.org/10.1007/s12010-008-8483-x

    Article  Google Scholar 

  35. Mendiburu, A.Z., Carvalho, J.A., Coronado, C.J.R.: Thermochemical equilibrium modeling of biomass downdraft gasifier: stoichiometric models. Energy 66, 189–201 (2014). https://doi.org/10.1016/j.energy.2013.11.022

    Article  Google Scholar 

  36. Godinez, C., Hernández-Fernández, F.J., Rios, A.P., Lozano, L.J., Illan, D.: Hydrogen generation in a downdraft moving bed gasifier coupled to a molten carbonate fuel cell. Chem. Eng. Res. Des. 90(5), 690–695 (2012). https://doi.org/10.1016/j.cherd.2011.09.012

    Article  Google Scholar 

  37. Verma, K., Gajera, Z.R., Sawarkar, A.N.: Kinetics of gasification and co-gasification of petcoke and coal. J. Inst. Eng. Ser. E (2020). https://doi.org/10.1007/s40034-020-00178-x

    Article  Google Scholar 

  38. Widjaya, E.R., Chen, G., Bowtell, L., Hills, C.: Gasification of non-woody biomass: a literature review. Renew. Sustain. Energy Rev. 89, 184–193 (2018). https://doi.org/10.1016/j.rser.2018.03.023

    Article  Google Scholar 

  39. Jia, J., Xu, L., Abudula, A., Sun, B.: Effects of operating parameters on performance of a downdraft gasifier in steady and transient state. Energy Convers. Manag. 155, 138–146 (2018). https://doi.org/10.1016/j.enconman.2017.10.072

    Article  Google Scholar 

  40. Hameed, S., Ramzan, N., Rahman, Z.U., Zafar, M., Riaz, S.: Kinetic modeling of reduction zone in biomass gasification. Energy Convers. Manag. 78, 367–373 (2014). https://doi.org/10.1016/j.enconman.2013.10.049

    Article  Google Scholar 

  41. BIS, IS: 1360 (Part IV/Set 1)—1974. (1974)

  42. IS: 1350, Indian standard—methods of test for coal and coke. Bur. Indian Stand. no. IS: 1350, 28 (1984)

  43. Channiwala, S.A., Parikh, P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063 (2002). https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  44. Vargas-Moreno, J.M., Callejón-Ferre, A.J., Pérez-Alonso, J., Velázquez-Martí, B.: A review of the mathematical models for predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 16(5), 3065–3083 (2012). https://doi.org/10.1016/j.rser.2012.02.054

    Article  Google Scholar 

  45. Chen, C., Jin, Y.Q., Yan, J.H., Chi, Y.: Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel 103, 58–63 (2013). https://doi.org/10.1016/j.fuel.2011.06.075

    Article  Google Scholar 

  46. Sandeep, K., Dasappa, S.: Oxy–steam gasification of biomass for hydrogen rich syngas production using downdraft reactor configuration. Int. J. Energy. Res. 38, 174–188 (2014). https://doi.org/10.1002/er.3019

    Article  Google Scholar 

  47. Pereira, E.G., Martins, M.A.: Gasification technologies. Elsevier, Amsterdam (2017)

    Google Scholar 

  48. Reed, T.B.: Principles and technology of biomass gasification. Adv. Sol. Energy: Annu. Rev. Res. Dev. 2, 125–174 (1985). https://doi.org/10.1007/978-1-4613-9951-3_3

    Article  Google Scholar 

  49. Xu, C.C., et al.: Biomass energy. Compr. Energy Syst. 1–5, 770–794 (2018). https://doi.org/10.1016/B978-0-12-809597-3.00121-8

    Article  Google Scholar 

  50. Susastriawan, A.A.P., Saptoadi, H., Purnomo, A.: Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: rice husk, sawdust, and their mixture. Sustain. Energy Technol. Assess. 34, 27–34 (2019). https://doi.org/10.1016/j.seta.2019.04.008

    Article  Google Scholar 

  51. Martínez, J.D., Silva Lora, E.E., Andrade, R.V., Jaén, R.L.: Experimental study on biomass gasification in a double air stage downdraft reactor. Biomass Bioenergy 35(8), 3465–3480 (2011). https://doi.org/10.1016/j.biombioe.2011.04.049

    Article  Google Scholar 

  52. Ratnadhariya, J.K., Channiwala, S.A.: Three zone equilibrium and kinetic free modeling of biomass gasifier - a novel approach. Renew. Energy 34(4), 1050–1058 (2009). https://doi.org/10.1016/j.renene.2008.08.001

    Article  Google Scholar 

  53. Chen, G., Guo, X., Cheng, Z., Yan, B., Dan, Z., Ma, W.: Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier. Waste Manag. 69, 162–169 (2017). https://doi.org/10.1016/j.wasman.2017.08.001

    Article  Google Scholar 

  54. Phuphuakrat, T., Nipattummakul, N., Namioka, T., Kerdsuwan, S., Yoshikawa, K.: Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge. Fuel 89(9), 2278–2284 (2010). https://doi.org/10.1016/j.fuel.2010.01.015

    Article  Google Scholar 

  55. Porcu, A., Sollai, S., Marotto, D., Mureddu, M., Ferrara, F., Pettinau, A.: Techno-economic analysis of a small-scale biomass-to-energy BFB gasification-based system. Energies 12(3), 494 (2019). https://doi.org/10.3390/en12030494

    Article  Google Scholar 

  56. Kempegowda, R.S., Skreiberg, O., Tran, K.Q.: Cost modeling approach and economic analysis of biomass gasification integrated solid oxide fuel cell systems. J. Renew. Sustain. Energy 4(4), 0431109 (2012). https://doi.org/10.1063/1.4737920

    Article  Google Scholar 

  57. Swanson, R.M., Platon, A., Satrio, J.A., Brown, R.C.: Techno-economic analysis of biomass-to-liquids production based on gasification scenarios. Fuel 89, S11–S19 (2009)

    Article  Google Scholar 

  58. Dowaki, K., Mori, S., Fukushima, C., Asai, N.: A comprehensive economic analysis of biomass gasification systems. Electr. Eng. Jpn. 153(3), 52–63 (2005). https://doi.org/10.1002/eej.20089

    Article  Google Scholar 

Download references

Funding

The authors have not received any funding/grant from any funding agency in public/private/commercial sector or any other.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Gupta.

Ethics declarations

Conflict of interest

The authors have not any conflict of interest in the subject matter or material discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Gupta, B. & Pandey, M. Hydrogen Rich Product Gas from Air–Steam Gasification of Indian Biomasses with Waste Engine Oil as Binder. Waste Biomass Valor 13, 3043–3060 (2022). https://doi.org/10.1007/s12649-022-01690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01690-4

Keywords

Navigation