Skip to main content

Advertisement

Log in

Cotton Stalk Compost as a Substitution to Farmyard Manure Along with Mineral Fertilizers and Microbials Enhanced Bt Cotton Productivity and Fibre Quality in Rainfed Vertisols

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cotton stalks, remaining after the cotton is harvested, are considered waste material and disposed of by burning. Presently, the supply of good quality manure, such as farmyard manure (FYM) is low. Thus, recycling of cotton stalks as compost can reduce the dependency on FYM apart from reducing inorganic fertilizer use and soil health enhancement. Some studies have reported on the conversion of cotton ginnery wastes into organic manure. However, no studies have reported about the composting of cotton stalks. We conducted field studies over three years on Vertisols to evaluate the impact of integrated use of microbially enriched cotton stalk compost (ECC) as an alternative to FYM along with mineral fertilizers in cotton production. Additionally, we evaluated an option of using native microbial consortia as seed treatment and studied their synergistic effect along with ECC application on cotton yield, fibre quality, and soil properties. Results indicated that the substitution of FYM with ECC in integrated nutrient management (INM) produced effects similar to that of FYM use in enhancing cotton yield, fibre quality and soil properties. Application of ECC + inorganic fertilizers (referred as modified nutrient management practice—MINM) increased boll numbers (8.4%) and boll weight (9.9%) compared to the recommended dose of fertilizers (RDF). Treating cotton seeds with microbial consortia increased seed cotton yield (SCY) by 12.8% (2815 kg ha−1) compared to untreated seed plot (2496 kg ha−1). Averaged over the years, INM (3344 kg ha−1) followed by MINM (3190 kg ha−1) recorded significantly higher SCY than RDF (2835 kg ha−1), which were 18 and 13% more than the RDF, respectively. MINM practice enhanced cotton fibre properties (staple length and bundle strength), soil nutrient status (major, secondary and micronutrients), and biological activities (microbial biomass carbon and soil enzymes), which were on par with INM. The use of ECC in INM is estimated to reduce 33% costs on nitrogenous, phosphatic, and potassic fertilizers, and can save approximately US$ 38 ha−1 on inorganic fertilizers and manures in the recommended dose of fertilizers (RDF) and INM practice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Material Availability

Not applicable.

References

  1. Bhattacharjya, S., Sahu, A., Manna, M.C., Patra, A.K.: Potential of surplus crop residues, horticultural waste and animal excreta as a nutrient source in the central and western regions of India. Curr. Sci. 116, 1314–1323 (2019)

    Article  Google Scholar 

  2. Kuna, E., Behling, R., Valange, S., Chatel, G., Colmenares, J.C.: Sonocatalysis: A potential sustainable pathway for the valorization of lignocellulosic biomass and derivatives. In: Lin, C. (ed.) Chemistry and Chemical Technologies in Waste Valorization. Topics in Current Chemistry Collections, pp. 1–20. Springer, Cham (2017)

    Google Scholar 

  3. Blaise, D., Ravindran, C.D.: Influence of tillage and residue management on growth and yield of cotton grown over 5 years in a semi-arid region of central India. Soil Tillage Res. 70, 163–173 (2003)

    Article  Google Scholar 

  4. Jamali, M., Bakhshandeh, E., Yaghoubi Khanghahi, M., Crecchio, C.: Metadata analysis to evaluate environmental impacts of wheat residues burning on soil quality in developing and developed countries. Sustainability 13, 6356 (2021)

    Article  Google Scholar 

  5. Ray, S.K., Bhattacharyya, T., Reddy, K.R., Pal, D.K., Chandran, P., Tiwary, P., et al.: Soil and land quality indicators of the Indo-Gangetic Plains of India. Curr. Sci. 107, 1470–1486 (2014)

    Google Scholar 

  6. Blaise, D., Ravindran, C.D., Singh, J.V.: Trends and stability analyses to interpret results of long-term effects of application of fertilizers and manure to rainfed cotton. J. Agron. Crop Sci. 192, 319–330 (2006)

    Article  Google Scholar 

  7. Reddy, A.R., Blaise, D., Anuradha, N.: Cost escalation in cotton cultivation: an analysis. Econ. Aff. 63, 833–838 (2018)

    Google Scholar 

  8. Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., Pal, D.K., Mandal, D.K., et al.: Soil information system: use and potentials in humid and semi-arid tropics. Curr. Sci. 107, 1550–1564 (2014)

    Google Scholar 

  9. Sidhu, G.S., Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., Pal, D.K., et al.: Impact of management levels and land-use changes on soil properties in rice-wheat cropping system of the Indo-Gangetic Plains. Curr. Sci. 107, 1487–1501 (2014)

    Google Scholar 

  10. Mandal, C., Mandal, D.K., Bhattacharyya, T., Sarkar, D., Pal, D.K., Prasad, J., et al.: Revisiting agro-ecological sub-regions of India—a case study of two major food production zones. Curr. Sci. 107, 1519–1536 (2014)

    Google Scholar 

  11. Velmourougane, K., Blaise, D.: Soil health, crop productivity and sustainability challenges. In: Bhat, R. (ed.) Sustainability Challenges in the Agrofood Sector, pp. 509–531. Wiley, New York (2017)

    Chapter  Google Scholar 

  12. Sayara, T., Basheer-Salimia, R., Hawamde, F., Sánchez, A.: Recycling of organic wastes through composting: process performance and compost application in agriculture. Agronomy 10, 1838 (2020)

    Article  Google Scholar 

  13. Isci, A., Demirer, G.N.: Biogas production potential from cotton wastes. Renew. Energy. 32, 750–757 (2007)

    Article  Google Scholar 

  14. Mandhyan, P.K., Patil, P.G., Sankaranarayanan, K., et al.: Cotton value chain. Cotton Res. J. 7, 17–35 (2016)

    Google Scholar 

  15. Sharma-Shivappa, R.R., Chen, Y.: Conversion of cotton wastes to bioenergy and value-added products. Trans. ASABE. 51, 2239–2246 (2008)

    Article  Google Scholar 

  16. Zhang, P.P., Xu, S.Z., Zhang, G.J., Pu, X.Z., Wand, J., Zhang, W.: Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China. J. Integr. Agric. 18, 1103–1119 (2019)

    Article  Google Scholar 

  17. Balasubramanya, R.H., Shaikh, A.J., Sreenivasan, S.: Cotton crop and industry waste. In: Chadha, K.L., Swaminathan, M.S. (eds.) Environment and Agriculture. Malhotra Publishing House, New Delhi (2008)

    Google Scholar 

  18. Jain, N., Bhatia, A., Pathak, H.: Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 14, 422–430 (2014)

    Article  Google Scholar 

  19. Guo, X.X., Liu, H.T., Zhang, J.: The role of biochar in organic waste composting and soil improvement: a review. Waste Manage. 102, 884–899 (2020)

    Article  Google Scholar 

  20. Zhao, Z., Zhang, C., Li, F., Gao, S., Zhang, J.: Effect of compost and inorganic fertilizer on organic carbon and activities of carbon cycle enzymes in aggregates of an intensively cultivated Vertisol. PLoS ONE 15, e0229644 (2020)

    Article  Google Scholar 

  21. Hulugalle, N.R., Scott, F.: A review of the changes in soil quality and profitability accomplished by sowing rotation crops after cotton in Australian Vertosols from 1970 to 2006. Aust. J. Soil Res. 46, 173–190 (2008)

    Article  Google Scholar 

  22. Sandell, G.R., Hopf, J., Chen, G., Yusaf, T.: The Feasibility and Development of Alternative Energy Sources for Cotton. National Centre for Engineering in Agriculture, USQ, Toowoomba (2014)

    Google Scholar 

  23. Ghosh, S., Hulugalle, N., Lockwood, P., Daniel, H., Mccorkell, B.E.: Applying composted cotton gin trash to a vertisol in Southeastern Queensland, Australia. Commun. Soil Sci. Plant Anal. 42, 1855–1861 (2011)

    Article  Google Scholar 

  24. Egbuta, M.A., McIntosh, S., Waters, D.L.E., Vancov, T., Liu, L.: Biological importance of cotton by-products relative to chemical constituents of the cotton plant. Molecules 22, 93 (2017)

    Article  Google Scholar 

  25. Mageshwaran, V., Kathe, A.A., Ashtaputre, N.M., et al.: Accelerated process for the preparation of bioenriched compost from cotton plant stalks. Cotton Res. J. 4, 104–113 (2013)

    Google Scholar 

  26. Velmourougane, K., Prasanna, R., Chawla, G., Nain, L., Kumar, A., Saxena, A.K.: Trichoderma-Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. J. Basic Microbiol. 59, 632–644 (2019)

    Article  Google Scholar 

  27. Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., Meftah Kadmiri, I.: Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 12, 628379 (2021)

    Article  Google Scholar 

  28. Klute, A., Dirksen, C.: Hydraulic conductivity diffusivity: laboratory methods. In: Klute, A. (ed.) Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Agronomy Monograph No. 9, 2nd edn., pp. 687–734. ASA, Madison (1986)

    Chapter  Google Scholar 

  29. Richards, L.A.: Diagnosis and improvement of saline and alkali soils. In: USDA Agriculture Handbook 60. USDA, Washington DC (1954)

    Google Scholar 

  30. Subbiah, B.V., Asija, G.L.: A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 25, 259–260 (1956)

    Google Scholar 

  31. Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A.: Estimation of available P. USDA. Circular 939, 1–19 (1954)

    Google Scholar 

  32. Jankowski, S.J., Freiser, H.: Flame photometric methods of determining the potassium tetraphenylborate. Anal. Chem. 33, 773–775 (1961)

    Article  Google Scholar 

  33. Jackson, M.L.: Soil Chemical Analysis. Prentice-Hall of India Pvt Ltd, New Delhi (1973)

    Google Scholar 

  34. Lindsay, W.L., Norvell, W.A.: Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421–428 (1978)

    Article  Google Scholar 

  35. Vance, E.D., Brookes, P.C., Jenkinson, D.S.: An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987)

    Article  Google Scholar 

  36. Casida, L.E., Klein, D.A., Santoro, T.: Soil dehydrogenase activity. Soil Sci. 98, 371–376 (1964)

    Article  Google Scholar 

  37. Tabatabai, M.A.: Soil enzymes. In: Weaver, R.W., et al. (eds.) Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties of Soils, pp. 775–833. Soil Science Society of America, Madison (1994)

    Google Scholar 

  38. Blaise, D., Rupa, T.R., Bonde, A.N.: Effect of organic and modern method of cotton cultivation on soil nutrient status. Commun. Soil Sci. Plant Anal. 35, 1247–1261 (2004)

    Article  Google Scholar 

  39. Das, A., Prasad, M., Shivay, Y.S., Subha, K.M.: Productivity and sustainability of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) cropping system as influenced by prilled urea, farmyard manure and Azotobacter. J. Agron. Crop Sci. 190, 298–304 (2004)

    Article  Google Scholar 

  40. Blaise, D., Bonde, A.N., Chaudhary, R.S.: Nutrient uptake and balance of cotton + pigeonpea strip intercropping on rainfed vertisols of central India. Nutr. Cycl. Agroecosyst. 73, 135–145 (2005)

    Article  Google Scholar 

  41. Sridevi, S., Ramakrishnan, K.: The effect of NPK fertilizer and AM fungi on the growth and yield of cotton (Gossypium hirsutum L.) Var. LRA 5166. Recent Res. Sci. Technol. 2, 39–41 (2010)

    Google Scholar 

  42. Khaliq, A., Abbasi, M.K., Hussain, T.: Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour. Technol. 97, 967–972 (2006)

    Article  Google Scholar 

  43. Vora, V.D., Rakholiya, K.D., Rupapara, K.V., Sutaria, G.S., Akbari, K.N.: Effect of integrated nutrient management on Bt cotton and post harvest soil fertility under dry farming agriculture. Asian J. Agric. Res. 9, 350–356 (2015)

    Google Scholar 

  44. Bradow, J.M., Davidonis, G.H.: Effects of environment on fiber quality. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds.) Physiology of Cotton, pp. 229–245. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  45. Constable, G.A., Bange, M.P.: Producing and preserving fiber quality: from the seed to the bale. Agron. J. 95, 1323 (2007)

    Google Scholar 

  46. Girma, K., Teal, R.K., Freeman, K.W., Boman, R.K., Raun, W.R.: Cotton lint yield and quality as affected by applications of N, P, and K fertilizers. J. Cotton Sci. 11, 12–19 (2007)

    Google Scholar 

  47. Ritz, K., Black, H.I.J., Campbell, C.D., Harris, J.A., Wood, C.: Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 9, 1212–1221 (2009)

    Article  Google Scholar 

  48. Vallejo, V.E., Roldan, F., Dick, R.P.: Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biol. Fertil. Soils. 46, 577–587 (2010)

    Article  Google Scholar 

  49. Velmourougane, K., Sahu, A.: Impact of transgenic cottons expressing cry1Ac on soil biological attributes. Plant Soil Environ. 59, 108–114 (2013)

    Article  Google Scholar 

  50. Velmourougane, K., Venugopalan, M.V., Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., et al.: Impacts of bioclimates, cropping systems, land use and management on the cultural microbial population in black soil regions of India. Curr. Sci. 107, 1452–1463 (2014)

    Google Scholar 

  51. Lupwayi, N.Z., Zhang, Y., Hao, X., Thomas, B.W., Eastman, A.H., Schwinghamer, T.D.: Linking soil microbial biomass and enzyme activities to long-term manure applications and their nonlinear legacy. Pedobiologia 74, 34–42 (2019)

    Article  Google Scholar 

  52. Nannipieri, P., Trasar-Cepeda, C., Dick, R.P.: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018)

    Article  Google Scholar 

  53. Anderson, T.H., Domsch, K.H.: Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21, 471–479 (1989)

    Article  Google Scholar 

  54. Yu, H., Ding, W., Luo, J., Geng, R., Ghani, A., Cai, Z.: Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fertil. Soils 48, 325–336 (2012)

    Article  Google Scholar 

  55. Rao, D.: Microbial diversity, soil health and sustainability. J. Indian Soc. Soil Sci. 55, 392–403 (2007)

    Google Scholar 

  56. Wani, S.P., Pathak, P., Jangawad, L.S., Eswaran, H., Singh, P.: Improved management of Vertisols in the semiarid tropics for increased productivity and soil carbon sequestration. Soil Use Manage. 19, 217–222 (2003)

    Article  Google Scholar 

  57. Chakraborty, A., Chakrabarti, K., Chakraborty, A., Ghosh, S.: Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol. Fertil. Soils. 47, 227–233 (2011)

    Article  Google Scholar 

  58. Goyal, S., Mishra, M.M., Dhankar, S.S., et al.: Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications. Biol. Fertil. Soils 15, 60–64 (1993)

    Article  Google Scholar 

  59. Böhme, L., Langer, U., Böhme, F.: Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 109, 141–152 (2005)

    Article  Google Scholar 

  60. Ebhin Masto, R., Chhonkar, P.K., Singh, D., Patra, A.K.: Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol. Biochem. 38, 1577–1582 (2006)

    Article  Google Scholar 

  61. Rupela, O.P., Gowda, C.L.L., Wani, S.P., Bee, H.: Evaluation of crop production systems based on locally-available biological inputs. In: Uphoff, N., et al. (eds.) Biological Approaches to Sustainable Soil Systems, pp. 501–515. CRC Press, Boca Raton (2005)

    Google Scholar 

  62. Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M.C., Marinari, S.: Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils. 48, 743–762 (2012)

    Article  Google Scholar 

  63. Singh, R.J., Ahlawat, I.P.S., Singh, S.: Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol. Environ. Monit. Assess. 185, 485–495 (2013)

    Article  Google Scholar 

  64. Velmourougane, K., Venugopalan, M.V., Bhattacharyya, T., Sarkar, D., Pal, D.K., Sahu, A., Ray, S.K., Nair, K.M., Prasad, J., Singh, R.S.: Soil dehydrogenase activity in agro-ecological sub regions of black soil regions in India. Geoderma 197–198, 186–192 (2013)

    Article  Google Scholar 

  65. Włodarczyk, T., Stȩpniewski, W., Brzezińska, M.: Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol. Fertil. Soils 36, 200–206 (2002)

    Article  Google Scholar 

  66. Furczak, J., Joniec, J.: Changes in biochemical activity of podzolic soil under willow culture in the second year of treatment with municipal-industrial sewage sludge. Int. Agrophys. 21, 145–152 (2007)

    Google Scholar 

  67. Prasad, R., Mertia, R.S.: Dehydrogenase activity and VAM fungi in tree-rhizosphere of agroforestry systems in Indian arid zone. Agrofor. Syst. 63, 219–223 (2005)

    Article  Google Scholar 

  68. Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I.A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., Peñuelas, J.: Global patterns of phosphatase activity in natural soils. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-01418-8

    Article  Google Scholar 

  69. Błońska, E., Lasota, J.: β-Glucosidase activity of forest soil as an indicator of soil carbon accumulation. In: Soil Biological Communities and Ecosystem Resilience, pp. 253–263. Springer, Cham (2017)

    Chapter  Google Scholar 

  70. Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., Pal, D.K., Mandal, D.K., et al.: Georeferenced soil information system: assessment of database. Curr. Sci. 107, 1400–1419 (2014)

    Google Scholar 

  71. DeLong, C., Cruse, R., Wiener, J.: The soil degradation paradox: compromising our resources when we need them the most. Sustainability 7, 866–879 (2015)

    Article  Google Scholar 

  72. Duong, T.T.T., Penfold, C., Marschner, P.: Amending soils of different texture with six compost types: Impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 354, 197–209 (2012)

    Article  Google Scholar 

  73. Duong, T.T.T., Verma, S.L., Penfold, C., Marschner, P.: Nutrient release from composts into the surrounding soil. Geoderma 195–196, 42–47 (2013)

    Article  Google Scholar 

  74. Masmoudi, S., Magdich, S., Rigane, H., Medhioub, K., Rebai, A., Ammar, E.: Effects of compost and manure application rate on the soil physico-chemical layers properties and plant productivity. Waste Biomass Valori 11, 1883–1894 (2020)

    Article  Google Scholar 

  75. Adesemoye, A.O., Torbert, H.A., Kloepper, J.W.: Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 54, 876–886 (2008)

    Article  Google Scholar 

  76. Kumar, A., Patel, J.S., Meena, V.S., Ramteke, P.W.: Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J. Plant Nutr. 42, 1402–1415 (2019)

    Article  Google Scholar 

  77. Kranthi, K.R.: Cotton production systems—need for a change in India. Cotton Stat. News 38, 4–7 (2014)

    Google Scholar 

  78. Venugopalan, M.V., Reddy, A.R., Kranthi, K.R., Yadav, M.S., Vandana, S., Dhanashree, P.: A decade of Bt cotton in India: land use changes and other socio-economic consequences. In: Obi Reddy, G.P., Patil, N.G., Chaturvedi, A. (eds.) Sustainable Management of Land Resources: An Indian perspecTive. Apple Academic Press Inc, New Jersey (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge with gratitude the support provided by the Directors of Indian Council of Agricultural Research (ICAR)-Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India and ICAR- Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, Maharashtra, India.

Funding

The authors are thankful to the ICAR-Central Institute for Cotton Research, Nagpur for providing financial support under the institute project “Evaluation of bioenriched compost on growth and yield of cotton”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: KV; Experiment performance, KV, AM, and VM; Data handling and analysis: KV, DB; Writing of original draft, KV, DB; writing, reviewing, and editing, KV, DB.

Corresponding author

Correspondence to Kulandaivelu Velmourougane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmourougane, K., Manikandan, A., Blaise, D. et al. Cotton Stalk Compost as a Substitution to Farmyard Manure Along with Mineral Fertilizers and Microbials Enhanced Bt Cotton Productivity and Fibre Quality in Rainfed Vertisols. Waste Biomass Valor 13, 2847–2860 (2022). https://doi.org/10.1007/s12649-022-01689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01689-x

Keywords

Navigation