Skip to main content

Advertisement

Log in

Recovery of Metallic Lead of Cupel Wastes from Gold Analysis by Alkaline Fusion in the Presence of Sulfur

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

High precision and accuracy make Pb-Fire assay the method of choice for gold analysis in mineralogical samples. The second stage of this method, called cupellation, leaves the used container (cupel) highly contaminated with PbO. Since tons of cupel waste are generated annually from gold analysis worldwide, the disposal of such material constitutes a serious risk to the environment. In the present paper the recovery of the lead from cupel waste by means of an alkaline fusion in the presence of sulfur was evaluated considering the effects of the following variables: amount of NaOH and sulfur, time, and temperature. Gravimetric analyses indicated 81.3% (w/w) recovery of lead in the form of metallic lead from 5.00 g of cupel waste using 3.00 g of NaOH, 0.5 g of S8, after 15 min at 650 °C. During the process, sulfur promoted the reduction of lead oxide. After the process, both the cupel wastes and the resulting secondary wastes presented lead concentrations below the maximum limits determined by both Brazilian legislation and that followed by US Environmental Protection Agency, and can be considered safe for disposal. Furthermore, the proposed method allows cupel wastes to be converted from an environmental liability to a raw material for the production of metallic Pb.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. DNPM—National Department of Mineral Production, Sumário Mineral 2001. http://www.dnpm.gov.br/dnpm/paginas/balanco-mineral/arquivos/balanco-mineral-brasileiro-2001-ouro (2001). Accessed 6 June 2018

  2. WGC—World Gold Council, Gold History and Facts (2018). https://www.gold.org/about-gold/gold-demand (2018). Accessed 6 June 2018

  3. Barefoot, R.R., Van Loon, J.C.: Recent advances in the determination of the platinum group elements and gold. Talanta 49, 1–14 (1999). https://doi.org/10.1016/S0039-9140(98)00347-6

    Article  Google Scholar 

  4. Klemm, D., Klemm, R., Murr, A.: Gold of the Pharaohs—6000 years of gold mining in Egypt and Nubia. J. Afr. Earth Sci. 33, 643–659 (2001). https://doi.org/10.1016/s0899-5362(01)00094-x

    Article  Google Scholar 

  5. Marsden, J.O., House, C.L.: The chemistry of gold extraction. Littleton, Colorado (2006)

    Google Scholar 

  6. Tully, E., Lucey, B.M.: A power GARCH examination of the gold market. Res. Int. Bus. Financ. 21, 316–325 (2007). https://doi.org/10.1016/j.ribaf.2006.07.001

    Article  Google Scholar 

  7. Juvonen, R., Lakomaa, T., Soikkeli, L.: Determination of gold and the platinum group elements in geological samples by ICP-MS after nickel sulphide fire assay: difficulties encountered with different types of geological samples. Talanta 58, 595–603 (2002). https://doi.org/10.1016/S0039-9140(02)00330-2

    Article  Google Scholar 

  8. Vanhaecke, F., Resano, M., Koch, J., McIntosh, K., Günther, D.: Femtosecond laser ablation-ICP-mass spectrometry analysis of a heavy metallic matrix: determination of platinum group metals and gold in lead fire-assay buttons as a case study. J. Anal. At. Spectrom. 25, 1259–1267 (2010). https://doi.org/10.1039/c002746d

    Article  Google Scholar 

  9. Figueiredo, A.M.G., Oliveira, V.X., Jr., Melfi, A.J.: Determination of gold at trace level in samples of weathered itabirite from the iron quadrilateral by analysis by neutron activation. Geochim. Bras. 11, 113–120 (1996). https://doi.org/10.21715/gb.v11i1.122

    Article  Google Scholar 

  10. Anderson, C., Moreno, F., Geurts, F., Wreesmann, C., Ghomshei, M.: A comparative analysis of gold-rich plant material using various analytical methods. Microchem. J. 81, 81–85 (2005). https://doi.org/10.1016/j.microc.2005.01.004

    Article  Google Scholar 

  11. Wall, S.G., Chow, A.: The determination of losses in the fire assay of gold part II. Losses in the complete assay and application of optimal procedures. Anal. Chim. Acta 70, 425–438 (1974). https://doi.org/10.1016/S0003-2670(01)85197-7

    Article  Google Scholar 

  12. Bugbee, E.E.: A textbook of fire assaying. Colorado School of Mines Press, Colorado (1981)

    Google Scholar 

  13. Hall, G.E., Bonham-Carte, G.F., Maclaurin, A.I., Ballantyne, S.B.: Comparison of instrumental neutron activation analysis of geological materials with other multielement techniques. Talanta 37, 135–155 (1990). https://doi.org/10.1016/0039-9140(90)80054-j

    Article  Google Scholar 

  14. Rao, C.R.M., Reddi, G.S.: Platinum group metals (PGM); occurrence, use and recent trends in their determination. Trends Anal. Chem. 19, 565–586 (2000). https://doi.org/10.1016/S0165-9936(00)00031-5

    Article  Google Scholar 

  15. Laurus, K.A., Fletcher, W.K.: Gold distribution in glacial sediments and soils at Boston property, Nunavut, Canada. J. Geochem. Explor. 67, 271–285 (1999). https://doi.org/10.1016/S0375-6742(99)00070-9

    Article  Google Scholar 

  16. Muir, A., Mitchell, J., Flatman, S.R., Sabbagha, C.: A practical guide to re-treatment of gold processing residues. Miner. Eng. 18, 811–824 (2005). https://doi.org/10.1016/j.mineng.2005.01.027

    Article  Google Scholar 

  17. Magalhães, F.B., Carvalho, C.F., Carvalho, E.L.C.N., Yoshida, M.I., Santos, C.G.: Rendering wastes obtained from gold analysis by the lead-fusion fire-assay method non-hazardous. J. Environ. Manage. 110, 110–115 (2012). https://doi.org/10.1016/j.jenvman.2012.06.028

    Article  Google Scholar 

  18. Rustini, R., Taufik, D., Purnawan, M., Julyana, R., Widjanarko, D.I.A.: Characteristic of cupel based on magnesia and synthetic bone ash. JKGI 27, 94–102 (2019). https://doi.org/10.32537/jkgi.v27i2.4413

    Article  Google Scholar 

  19. Liu, Y.-H., Wan, B., Xue, D.-S.: Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks. Molecules 24, 1778 (2019). https://doi.org/10.3390/molecules24091778

    Article  Google Scholar 

  20. United States Environmental Protection Agency (US EPA). Rules and regulations, Federal Register, Vol. 80, No. 74, The Code of Federal Regulations, Title 40, Part 261, 80 FR 21301, 2015–00257, 21301–21501. (2015)

  21. ABNT—Brazilian Association of Technical Standards. NBR 10004: solid waste e classification, Rio de Janeiro, p. 61. (2004a)

  22. ABNT—Brazilian Association of Technical Standards. NBR 10005: leaching tests, Rio de Janeiro, p. 10. (2004b)

  23. Townsend, T., Musson, S., Dubey, B., Pearson, B.: Leachability of printed wire boards containing leaded and lead-free solder. J. Environ. Manage. 88, 926–931 (2008). https://doi.org/10.1016/j.jenvman.2007.04.017

    Article  Google Scholar 

  24. Moody, N., Yoon, D., Johnson, A., Wassweiler, E., Nasilowski, M., Bulovic, V., Bawendi, M.G.: Decreased synthesis costs and waste product toxicity for lead sulfide quantum dot ink photovoltaics. Adv. Sustain. Syst. 3, 1900061 (2019). https://doi.org/10.1002/adsu.201900061

    Article  Google Scholar 

  25. Ming Xia, M., Muhammad, F., Zeng, L., Li, S., Huang, X., Binquan Jiao, B., Shiau, Y., Li, D.: Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod. 209, 1206–1215 (2019)

    Article  Google Scholar 

  26. Intrakamhaeng, V., Clavier, K.A., Townsend, T.G.: Hazardous waste characterization implications of updating the toxicity characteristic list. J. Hazard. Mater. 383, 121171 (2020). https://doi.org/10.1016/j.jhazmat.2019.121171

    Article  Google Scholar 

  27. de Andrade Lima, L.R.P., Bernardez, L.A.: Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil. J. Hazard. Mater. 189, 692–699 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.091

    Article  Google Scholar 

  28. Cerceau, C.I., Carvalho, C.F., Rabelo, A.C.S., Santos, C.G., Gonçalves, S.M.D., Varejão, E.V.V.: Recovering lead from cupel waste generated in gold analysis by Pb-fire assay. J. Environ. Manage. 183, 771–776 (2016). https://doi.org/10.1016/j.jenvman.2016.08.052

    Article  Google Scholar 

  29. Pan, D., Li, L., Tian, X., Wu, Y., Cheng, N., Yu, H.: A review on lead slag generation, characteristics, and utilization. Resour. Conserv. Recycl. 146, 140–155 (2019). https://doi.org/10.1016/j.resconrec.2019.03.036

    Article  Google Scholar 

  30. U. S. Environmental Protection Agency. EPASAB-EEC-COM-99-002, pp. 1–3. United States Environmental Protection Agency (US EPA). Federal register, Announcement of Final Regulatory Determinations for Contaminants on the Third Drinking Water Contaminant Candidate List, 81 FR 32760 No. 1 (Monday, January 4, 2016). 2015-32760. pp. 13–19. (2016)

  31. COPAM/CERH-MG—Environmental Policy Council/Water Resource Council of The Minas Gerais State, Joint Normative Resolution N° 01-Classification of Water Bodies and Environmental Guidelines for Effluent Discharge, Belo Horizonte. (2008)

  32. Hettipathirana, T.D.: Simultaneous determination of parts-per-million level Cr, As, Cd and Pb, and major elements in low level contaminated soils using borate fusion and energy dispersive X-ray fluorescence spectrometry with polarized excitation. Spectrochim. Acta B 59, 223–229 (2004). https://doi.org/10.1016/j.sab.2003.12.013

    Article  Google Scholar 

  33. DNPM—National Department of Mineral Production, Mineral Summary 2014. http://www.anm.gov.br/dnpm/sumarios/chumbo-sumario-mineral-2014/view (2014). Accessed 06 June 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Isaac Cerceau.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerceau, C.I., de Freitas Carvalho, C., Varejão, E.V.V. et al. Recovery of Metallic Lead of Cupel Wastes from Gold Analysis by Alkaline Fusion in the Presence of Sulfur. Waste Biomass Valor 13, 2705–2715 (2022). https://doi.org/10.1007/s12649-022-01678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01678-0

Keywords

Navigation