Skip to main content
Log in

Sensitive Detection of Sulphide Ions Using Green Synthesized Monometallic and Bimetallic Nanoparticles: Comparative Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, green synthesized nanoparticles based spectrophotometric probe is used for highly sensitive, rapid and selective determination of sulphide anion. Nowadays, the concentration of sulphide anions in surrounding environment had tremendously increased due to anthropogenic activities. Release of untreated contaminated waste water from industries containing sulphide anions not only effect the human life but also negatively impact the aquatic and terrestrial life. Keeping in view the urgency to perform quantification of sulphide anions, an environmental friendly and economical biogenic method is considered for the fabrication of monometallic and bimetallic nanoparticles. Copper and silver monometallic nanoparticles and their alloy nanoparticles were prepared by using Psidium guajava leaves extract. Further these prepared nanoparticles were employed for detection of sulphide anions along with optimization of different experimental parameters. Optimum detection of analyte by monometallic and bimetallic nanoparticles occurred at higher pH conditions because in basic medium, proton dissociate from binding sites and enhanced the interaction of sulphide anions with the nanoparticles. Characterization of the prepared nanoparticles was carried out by UV–Vis spectroscopy, FTIR spectroscopy and X-ray diffraction analysis. In UV–Vis spectroscopy, Cu NPs, Ag NPs and bimetallic NPs showed absorption peaks at 343 nm, 462 nm and 352 nm respectively. FTIR spectroscopy confirmed the role of phytochemicals as natural reducing agent toward synthesis of Cu NPs, Ag NPs and bimetallic NPs. X-ray diffraction analysis confirmed the amorphous nature and average particle size of Cu NPs, Ag NPs and bimetallic NPs is calculated to be 78.1 nm, 88.4 nm and 72.6 nm. Application of monometallic and bimetallic nanoparticles as sensing probe for sulphide anions was performed with standard and real water samples under same experimental conditions. In case of copper nanoparticles (Cu NPs), recovery of sulphide anions from real sample was 72% and for silver nanoparticles (Ag NPs) it was 83%. On the other hand, bimetallic NPs depicted a recovery value of 90.6%. These efficient results for bimetallic nanoparticles can be attributed to their greater active sites and surface area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Omidi, M., Amoabediny, G., Yazdian, F., Habibi-Rezaei, M.: Hydrogen sulfide detection using a gold nanoparticle metalloprotein based probe. Chin. Phys. Lett. 31, 567–570 (2014)

    Google Scholar 

  2. Zhao, L., Zhao, L., Miao, Y., Liu, C.: Zhang,: A Colorimetric sensor for the highly selective detection of sulfide and 1,4-dithiothreitol based on the in-situ formation of silver nanoparticles using dopamine. Sensors 17(3), 626–627 (2017)

    Google Scholar 

  3. Shanmugaraj, K., Ilanchelian, M.: Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim. Acta. 183, 1721–1728 (2016)

    Google Scholar 

  4. McVay, R.D.: Emergency response and preparedness flawarn best management practices for water and wastewater systems. Florida Rural Water Assoc. 2, 1–3 (2007)

    Google Scholar 

  5. Shahbazi, N., Dorabei, Z.R.: Probe for sensitive direct determination of sulphide ions based on gold nanoparticles. Ind Eng. Technol. Nanobiotechnol. 12, 1140–1143 (2018)

    Google Scholar 

  6. Ni, P., Sun, Y., Dai, H., Hu, J., Jiang, S., Yilin, S., Wang, Y., Li, Z.: Colorimetric detection of sulfide ions in water samples based on the in-situ formation of Ag2S nanoparticles. Sens. Actuators B Chem. 220, 210–215 (2015)

    Google Scholar 

  7. Zhu, X., Liu, C., Liu, J.: Colorimetric detection of sulfide anions via redox-modulated surface chemistry and morphology of Au–Hg nanorods. Int. J. Anal. Chem. 34, 55–60 (2019)

    Google Scholar 

  8. Sinduja, B., John, A.S.: Silver nanoparticles capped with carbon dots as a fluorescent probe for the highly sensitive “off–on” sensing of sulfide ions in water. Anal. Bioanal. Chem. 411, 2597–2605 (2019)

    Google Scholar 

  9. Batool, M., Qureshi, Z., Hashmi, F., Mehboob, N.: Biosynthesis of copper nanoparticles by using Aloe barbadensis leaf extracts. Interv. Pediatr. Dent. Open Access J 1(2), 34–37 (2018)

    Google Scholar 

  10. Kulkarni, V., Kulkarni, P.: Synthesis of copper nanoparticles with Aegle marmelos leaf extract. Nanosci. Nanotechnol. 8, 401–404 (2014)

    Google Scholar 

  11. Rodríguez-Felix, F., Lopez-Cota, A.G., Moreno-Vasquez, M.J., Graciano-Verdugo, A.Z., Quintero-Reyes, I.E., Del-Toro-Sánchez, C.L., Tapia-Hernández, J.A.: Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. J. Heliyon 7(4), 6923 (2021)

    Google Scholar 

  12. Bharadwaj, K.K., Rabha, B., Pati, S., Choudhury, B.K., Sarkar, T., Gogoi, S.K., Edinur, H.A.: Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). J. Nanomater. 11(8), 1999 (2021)

    Google Scholar 

  13. Biao, L., Tan, S., Meng, Q.: Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials (Basel) 8(1), 53 (2018)

    Google Scholar 

  14. Zhang, X., Wang, G., Liu, X., Fang, B.: Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. J. Phys. Chem 112(43), 16845–16849 (2008)

    Google Scholar 

  15. Khanna, P.K., More, P., Jawalkar, J., Patil, Y., Rao, N.K.: Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature. J. Nanopart. Res. 11, 793–799 (2019)

    Google Scholar 

  16. Susman, M.D., Feldman, Y., Vaskevich, A., Rubinstein, I.: Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates. Chm. Mater. 24, 2501–2508 (2012)

    Google Scholar 

  17. Rodríguez-Fernández, J., Costa, J.M., Pereiro, R., Anz-Medel, A.: Solid-surface room-temperature phosphorescence optosensing in continuous flow systems: an approach for ultratrace metal ion determination. Anal. Chem. 398, 23–31 (1999)

    Google Scholar 

  18. Khushk, A.M., Memon, A., Lashari, M.I.: Factors affecting guava production in Pakistan. J. Agric. Res. 47(2), 03681157 (2009)

    Google Scholar 

  19. Abubakar, R.A., Haque, M.: Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J. Pharm Bioallied Sci. 12(1), 1–10 (2020)

    Google Scholar 

  20. Hassanien, R., Husein, Z.D., Al-Hakkani, F.M.: Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon 4, 34–35 (2018)

    Google Scholar 

  21. Bose, D., Chatterjee, S.: Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl. Nanosci. 6, 895–901 (2016)

    Google Scholar 

  22. Wang, L., Wu, Y., Sh, X.J., Wu, Z.W.: Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater. Sci. Eng. C 86, 1–8 (2018)

    Google Scholar 

  23. Ashishie, B.P., Anyama, A.C., Ayi, A.A., Oseghale, O.C., Adesuji, T.E., Labulo, H.A.: Green synthesis of silver monometallic and copper-silver bimetallic nanoparticles using Kigelia africana fruit extract and evaluation of their antimicrobial activities. Int. J. Phys. Sci. 13(3), 24–32 (2018)

    Google Scholar 

  24. Bharani, M., Karpagam, T., Varalakshmi, B., Gayathiri, G., Priya, L.K.: Synthesis and characterization of silver nanoparticles from Wrightia tinctoria. Int. J. Appl. Biol. Pharma. Technol. 3(1), 58–63 (2012)

    Google Scholar 

  25. Arshad, B., Iqbal, T., Akram, S., Mushtaq, M.: An expedient reverse-phase high-performance chromatogSraphy (RP-HPLC) based method for high-throughput analysis of deferoxamine and ferrioxamine in urine. Biomed. Chromatogr. 31(2), 3805–3808 (2009)

    Google Scholar 

  26. Shafey, A.M.E.: Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process. Synth. 9(1), 304–339 (2020)

    Google Scholar 

  27. Shin, S., Saravanakumar, K., Mariadoss, A.V.A., Hu, X., Sathiyaseelan, A., Wang, M.H.: Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities. J. Nanostruct. Chem. 17, 1–10 (2021)

    Google Scholar 

  28. Amaro, P., Szabo, C.I., Schlesser, S., Gumberidze, A., Kessler, E.G., Jr., Henins, A., Indelicato, P.: A vacuum double-crystal spectrometer for reference-free X-ray spectroscopy of highly charged ions. Radiat. Phys. Chem. 98, 132–149 (2014)

    Google Scholar 

  29. Torey, A., Sasidharan, S., Yeng, C., Latha, L.Y.: Standardization of Cassia spectabilis with respect to authenticity, assay and chemical constituent analysis. Molecules 15, 3411–3420 (2010)

    Google Scholar 

  30. Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., Rokhum, S.L.: Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11(5), 2804–2837 (2021)

    Google Scholar 

  31. Manasa, D.J., Chandrashekar, R.K., Kumar, M.J.D., Niranjana, M., Navada, K.: Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles—characterization, photocatalytic and their biological investigations. Arab. J. Chem. 14(6), 184 (2021). https://doi.org/10.1016/j.arabjc.2021.103184

    Article  Google Scholar 

  32. Abdel-Monem, Y.K., Emam, S.M., Okda, H.M.Y.: Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci.: Mater. Electron. 28, 2923–2934 (2017)

    Google Scholar 

  33. Sarkar, J., Chakraborty, N., Chatterjee, A., Bhattacharjee, A., Dasgupta, D., Acharya, K.: Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials 10(2), 312 (2020). https://doi.org/10.3390/nano10020312

    Article  Google Scholar 

  34. Chand, K., Cao, D., Fouad, E.D., Shah, H.A., Dayo, Q.A., Zhu, K., Lakhan, N.M., Mehdi, G., Dong, S.: Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 13(11), 8248–8261 (2020)

    Google Scholar 

  35. Oliveira, G.Z.S., Lopes, C.A.P., Sousa, M.H., et al.: Synthesis of silver nanoparticles using aqueous extracts of Pterodon emarginatus leaves collected in the summer and winter seasons. Int. Nano Lett. 9, 109–117 (2019)

    Google Scholar 

  36. Anjum, T., Ashraf, H.: Microwave-assisted green synthesis and characterization of silver nanoparticles using Melia azedarach for the management of Fusarium wilt in tomato. Front. Microbiol. (2020). https://doi.org/10.3389/fmicb.2020.00238

    Article  Google Scholar 

  37. Chartarrayawadee, W., Charoensin, P., Saenma, J., Rin, T., Khamai, P.: Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity. Green Process. Synth. 9(1), 107–118 (2020)

    Google Scholar 

  38. Minal, S.P., Prakash, S.: Cu-Zn and Ag-Cu bimetallic nanoparticles as larvicide to control malaria parasite vector: a comparative analysis. IEEE Region Humanitarian Technol. 16, 1–6 (2016)

    Google Scholar 

  39. Thakore, S.I., Nagar, S.P., Jadeja, N.R., Thounaojam, M., Devkar, V.R., Rathore, S.P.: Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arab. J. Chem. 12(5), 694–700 (2019)

    Google Scholar 

  40. Soomro, R.A.: Selenium-enriched bacterial protein as a source of organic selenium in broiler chickens. GRIN Publish. 7(2), 56–57 (2017)

    Google Scholar 

  41. Ghoto, S.A., Khuhawar, M.Y., Jahangir, T.M.: Applications of copper nanoparticles for colorimetric detection of dithiocarbamate pesticides. J. Nanostruct. Chem. 9(2), 77–93 (2019)

    Google Scholar 

  42. Hatamie, A., Zargar, B., Jalali, A.: Copper nanoparticles: a new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta 121, 234–238 (2014)

    Google Scholar 

  43. Długosz, O., Chwastowski, J., Banach, M.: Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem. Pap. 74(1), 239–252 (2020)

    Google Scholar 

  44. Dinesh, V.P., Biji, P., Ashok, A., Dhara, S.K., Kamruddin, M., Tyagi, A.K., Raj, B.: Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@ Ag core–shell nanorods. RSC Adv. 4(103), 58930–58940 (2014)

    Google Scholar 

  45. Mehta, V.N., Kumar, M.A., Kailasa, S.K.: Colorimetric detection of copper in water samples using dopamine dithiocarbamate-functionalized Au nanoparticles. Indus. Eng. Chem. Res. 52(12), 4414–4420 (2013)

    Google Scholar 

  46. Annadhasan, M., Muthukumarasamyvel, T., Sankar, B.V., Rajendiran, N.: Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain. Chem. Eng. 2(4), 887–896 (2014)

    Google Scholar 

  47. Wang, C., Gao, X., Chen, Z., Chen, Y., Chen, H.: Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers 9(12), 689–693 (2017)

    Google Scholar 

  48. Akhondi, M., Jamalizadeh, E.: Selective Colorimetric Detection of Mn2+ and Cr3+ Ions using silver nanoparticles modified with sodium dodecyl sulfonate and β-cyclodextrin. Acta Chim. Slov. 67(2), 537–550 (2020)

    Google Scholar 

  49. Lou, T., Chen, L., Chen, Z., Wang, Y., Chen, L., Li, J.: Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl. Mater. Interfaces 3(11), 4215–4220 (2011)

    Google Scholar 

  50. Elavarasi, M., Rajeshwari, A., Alex, A.S., Kumar, N.D., Mukherjee, A.: Simple colorimetric sensor for Cr (III) and Cr (VI) speciation using silver nanoparticles as a probe. Anal. Methods 6, 5161–5167 (2014)

    Google Scholar 

  51. Modi, P.R., Mehta, N.V., Kailasa, K.S.: Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions. Sens. Actuators B Chem. 195, 562–571 (2014)

    Google Scholar 

  52. Rull-Barrull, J., d’Halluin, M., Le Grognec, E., Felpin, X.F.: A highly selective colorimetric and fluorescent chemosensor for Cr2+ in aqueous solutions. Tetrahedron Lett. 58(6), 505–508 (2017)

    Google Scholar 

  53. Alam, A., Ravindran, A.A., Chandran, P., Khan, S.S.: Highly selective colorimetric detection and estimation of Hg2+ at nano-molar concentration by silver nanoparticles in the presence of glutathione. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 137(3), 503–508 (2015)

    Google Scholar 

  54. Qiao, B., Liang, Y., Wang, J.T., Jiang, Y.: Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier. Appl. Surf. Sci. 2(364), 103–109 (2016)

    Google Scholar 

  55. Jin, H.L., Han, S.C.: Eco-friendly colorimetric detection of mercury (II) ions using label-free anisotropic nanogolds in ascorbic acid solution. Sens. Actuators B Chem. 195(3), 239–245 (2014)

    Google Scholar 

  56. Niu, X., Zhong, Y., Chen, R., Wang, F., Liu, Y., Luo, D.: Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme. Opt. Express 27(21), 30421–30428 (2019)

    Google Scholar 

  57. Shao, H., Ding, Y., Hong, X., Liu, Y.: Ultra-facile and rapid colorimetric detection of Cu 2+ with branched polyethylenimine in 100% aqueous solution. Analyst 143(2), 409–414 (2018)

    Google Scholar 

  58. Ye, X., Zheng, C., Chen, J., Gao, Y., Murray, C.B.: Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 13(2), 765–771 (2013)

    Google Scholar 

  59. Shen, W., Qu, Y., Pei, X., Zhang, X., Ma, Q., Zhang, Z., Zhou, J.: Green synthesis of gold nanoparticles by a newly isolated strain Trichosporon montevideense for catalytic hydrogenation of nitroaromatics. Biotechnol. Lett. 38(9), 1503–1508 (2016)

    Google Scholar 

  60. Kumar, S., Bhanjana, G., Dilbaghi, N., Kumar, R., Umar, A.: Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide nanosheets. Sens. Actuators B. Chem. 227(4), 29–34 (2016)

    Google Scholar 

  61. Tashkhourian, J., Sheydaei, O.: Chitosan capped silver nanoparticles as colorimetric sensor for the determination of iron (III). Anal. Bioanal. Chem. Res. 4(2), 249–260 (2017)

    Google Scholar 

  62. Yang, X., Yang, L., Dou, Y., Zhu, S.: Synthesis of highly fluorescent lysine-stabilized Au nanoclusters for sensitive and selective detection of Cu2+ ion. J. Mater. Chem. C 1(41), 6748–6751 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zaib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaib, M., Malik, T., Akhtar, N. et al. Sensitive Detection of Sulphide Ions Using Green Synthesized Monometallic and Bimetallic Nanoparticles: Comparative Study. Waste Biomass Valor 13, 2447–2459 (2022). https://doi.org/10.1007/s12649-021-01665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01665-x

Keywords

Navigation