Skip to main content
Log in

Improving the Yield of Citric Acid Through Valorization of Cashew Apple Juice by Aspergillus niger: Mutation, Nanoparticles Supplementation and Taguchi Technique

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

This study implemented strategies to improve citric acid yield by Aspergillus niger through strain improvement and process optimization using under-utilized cashew apple juice.

Methods

A. niger LCFS 5 (MZ448204) earlier isolated from a cashew plantation and produced citric acid on Czapek-Dox agar supplemented with bromocresol green (CZA-BG) was improved through UV mutation (254 nm). The best mutant was grown in cashew apple juice medium. The effects of supplementation of medium with 10% sucrose, metal ions, and biogenic zinc oxide nanoparticles (ZnONPs) were studied and production of citric acid was optimized using Taguchi technique.

Results

The mutant A. niger LCFAn40 (MZ448205) had yellow zonation of 9.0 cm on CZA-BG. It produced citric acid yield of 18.4, 25.03, 34.62 and 92.61%/day for supplementation with sucrose, metal ions, ZnONPs and Taguchi optimization, respectively. These translate to 2.38–11.98 folds improvement in comparison with wild strain.

Conclusion

This study establishes multi-dimensional approach as a viable technique to improve citric acid production in cashew apple juice. To our knowledge, this is the first report of broad-based optimization regime of citric acid production that involves nanoparticles supplementation, which may open a new vista of investigations on the use of nanobiocatalysts in bioprocesses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data for the work are available with the authors.

Code Availability

Not applicable.

References

  1. Behera, B.C.: Citric acid from Aspergillus niger: a comprehensive overview. Crit. Rev. Microbiol. 46, 727–749 (2020)

    Google Scholar 

  2. Sawant, O., Mahale, S., Ramchandran, V., Nagaraj, G., Bankar, A.: Fungal citric acid production using waste materials: a mini-review. J. Microbiol. Biotechnol. Food Sci. 8, 821–828 (2018)

    Google Scholar 

  3. Ciriminna, R., Meneguzzo, F., Delisi, R., Pogliaro, M.: Citric acid: emerging applications of key biotechnology industrial product. Chem. Central J. 11, 1–9 (2017)

    Google Scholar 

  4. Börekçi, B.S., Kaban, G., Kaya, M.: Citric acid production of yeasts: an overview. EuroBiotech. J. 5, 79–91 (2021)

    Google Scholar 

  5. Behera, B.C., Mishra, R., Mohapatra, M.S.: Microbial citric acid: production, properties, application and future perspectives. Food Front. 2, 62–76 (2021)

    Google Scholar 

  6. Cavallo, E., Charreau, H., Cerrutti, P., Foresti, M.L.: Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res. 17, fox084 (2017)

    Google Scholar 

  7. Adeoye, A.O., Lateef, A., Gueguim-Kana, E.B.: Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 4, 568–574 (2015)

    Google Scholar 

  8. Tong, Z., Tong, Y., Wang, D., Shi, Y.C.: Whole maize flour and isolated maize starch for production of citric acid by Aspergillus niger: a review. Starch-Stärke (2021). https://doi.org/10.1002/star.202000014

    Article  Google Scholar 

  9. Elegbede, J.A., Lateef, A.: Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications. Waste Biomass Valor. 9, 1273–1287 (2018)

    Google Scholar 

  10. Elegbede, J.A., Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Oladipo, I.C., Adebayo, E.A., Beukes, L.S., Gueguim-Kana, E.B.: Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol. 12, 857–863 (2018)

    Google Scholar 

  11. Elegbede, J.A., Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Oladipo, I.C., Abbas, S.H., Beukes, L.S., Gueguim-Kana, E.B.: Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol. Progr. 35, e2829 (2019)

    Google Scholar 

  12. Elegbede, J.A., Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Oladipo, I.C., Aina, D.A., Beukes, L.S., Gueguim-Kana, E.B.: Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valor. 11, 781–791 (2020)

    Google Scholar 

  13. Ganaie, M.A., Lateef, A., Gupta, U.S.: Enzymatic trends of fructooligosaccharides production by microorganisms. Appl. Biochem. Biotechnol. 172, 2143–2159 (2014)

    Google Scholar 

  14. Lateef, A., Oloke, J.K., Gueguim-Kana, E.B., Raimi, O.R.: Production of fructosyltransferase by a local isolate of Aspergillus niger in both submerged and solid substrate media. Acta Aliment. 41, 100–117 (2012)

    Google Scholar 

  15. Wang, B., Li, H., Zhu, L., Tan, F., Li, Y., Zhang, L., Shi, G.: High-efficient production of citric acid by Aspergillus niger from high concentration of substrate based on the staged-addition glucoamylase strategy. Bioprocess Biosyst. Eng. 40, 891–899 (2017)

    Google Scholar 

  16. Ji, H., Xiang, Z., Qi, H., Han, T., Pranovich, A., Song, T.: Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem. 21, 1956–1964 (2019)

    Google Scholar 

  17. Özüdoğru, H.R., Nieder-Heitmann, M., Haigh, K.F., Görgens, J.F.: Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Ind. Crops Prod. 133, 259–268 (2019)

    Google Scholar 

  18. Monteiro, F., Catarino, L., Batista, D., Indjai, B., Duarte, M.C., Romeiras, M.M.: Cashew as a high agricultural commodity in West Africa: insights towards sustainable production in Guinea-Bissau. Sustainability 9, 1666 (2017)

    Google Scholar 

  19. Tola, J., Mazengia, Y.: Cashew production benefits and opportunities in Ethiopia: a review. J. Agric. Crop Res. 7, 18–25 (2019)

    Google Scholar 

  20. FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 13 June 2021

  21. STATISTA.: Production of cashew nuts (in shell) worldwide from 2010 to 2019. https://www.statista.com/statistics/967702/global-cashew-nut-production/. Accessed 13 June 2021

  22. de Araujo Padilha, C.E., da Costa Nogueira, C., Oliveira Filho, M.A., de Santana Souza, D.F., de Oliveira, J.A., dos Santos, E.S.: Valorization of cashew apple bagasse using acetic acid pretreatment: production of cellulosic ethanol and lignin for their use as sunscreen ingredients. Process Biochem. 91, 23–33 (2020)

    Google Scholar 

  23. Jeyavishnu, K., Thulasidharan, D., Shereen, M.F., Arumugam, A.: Increased revenue with high value-added products from cashew apple (Anacardium occidentale L.)—addressing global challenges. Food Bioprocess Technol. 14, 985–1012 (2021)

    Google Scholar 

  24. Lowor, S.T., Agyente-Badu, C.K.: Mineral and proximate composition of cashew apple (Anarcadium occidentale L.) juice from northern savannah, forest and coastal savannah regions in Ghana. Am. J. Food Technol. 4, 154–161 (2009)

    Google Scholar 

  25. Adeeyo, A.O., Lateef, A., Gueguim-Kana, E.B.: Optimization of the production of extracellular polysaccharide from the Shiitake medicinal mushroom Lentinus edodes (Agaricomycetes) using mutation and a genetic algorithm-coupled artificial neural network (GA-ANN). Int. J. Med. Mushrooms 18, 571–581 (2016)

    Google Scholar 

  26. Elegbede, J.A., Lateef, A.: Optimization of the production of xylanases in corncob-based media by Aspergillus niger and Trichoderma longibrachiatum using Taguchi approach. Acta Biol. Szeged. 63, 51–58 (2019)

    Google Scholar 

  27. Gueguim-Kana, E.B., Oloke, J.K., Lateef, A., Adesiyan, M.O.: Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural Network and Genetic Algorithm. Renew. Energy 46, 276–281 (2012)

    Google Scholar 

  28. Gueguim-Kana, E.B., Oloke, J.K., Lateef, A., Donfack-Kana, A.F.: Pro-optimizer: a novel web enabled optimization engine for microbial fermentations. Biotechnol. Biotechnol. Equip. 24, 2137–2141 (2010)

    Google Scholar 

  29. Gueguim-Kana, E.B., Oloke, J.K., Lateef, A., Oyebanji, A.: Comparative evaluation of artificial neural network coupled genetic algorithm and response surface methodology for modelling and optimization of citric acid production by Aspergillus niger MCBN 297. Chem. Eng. Transact. 27, 397–402 (2012)

    Google Scholar 

  30. Gueguim-Kana, E.B., Oloke, J.K., Lateef, A., Zebaze-Kana, M.G.: Novel optimal temperature profile for acidification process of Lactobacillus bulgaricus and Streptococcus thermophilus in yoghurt fermentation using Artificial Neural Network and Genetic Algorithm. J. Ind. Microbiol. Biotechnol. 34, 491–496 (2007)

    Google Scholar 

  31. Sanusi, I.A., Suinyuy, T.N., Lateef, A., Gueguim-Kana, E.B.: Effect of nickel oxide nanoparticles on bioethanol production: process optimization, kinetic and metabolic studies. Process Biochem. 92, 386–400 (2020)

    Google Scholar 

  32. Sewsynker, Y., Gueguim-Kana, E.B., Lateef, A.: Modelling of biohydrogen generation in microbial electrolysis cells (MECs) using a committee of artificial neural networks (ANNs). Biotechnol. Biotechnol. Equip. 29, 1208–1215 (2015)

    Google Scholar 

  33. Dutta, A., Sahoo, S., Mishra, R.R., Pradhan, B., Das, A., Behera, B.C.: A comparative study of citric acid production from different agro-industrial wastes by Aspergillus niger isolated from mangrove forest soil. Environ. Exp. Biol. 17, 115–122 (2019)

    Google Scholar 

  34. Francisco, J.C.E., Rivera, W.L., Vital, P.G.: Influences of carbohydrate, nitrogen, and phosphorus sources on the citric acid production by fungal endophyte Aspergillus fumigatus P3I6. Prep. Biochem. Biotechnol. 50, 292–301 (2020)

    Google Scholar 

  35. Hesham, A.E.L., Mostafa, Y.S., AlSharqi, L.E.O.: Optimization of citric acid production by immobilized cells of novel yeast isolates. Mycobiol. 48, 122–132 (2020)

    Google Scholar 

  36. Papadaki, E., Mantzouridou, F.T.: Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger. Bioresour. Technol. 280, 59–69 (2019)

    Google Scholar 

  37. Hu, W., Li, W.J., Yang, H.Q., Chen, J.H.: Current strategies and future prospects for enhancing microbial production of citric acid. Appl. Microbiol. Biotechnol. 103, 201–209 (2019)

    Google Scholar 

  38. Ozdal, M., Kurbanoglu, E.B.: Citric acid production by Aspergillus niger from agro-industrial by-products: molasses and chicken feather peptone. Waste Biomass Valor. 10, 631–640 (2019)

    Google Scholar 

  39. Zhang, L., Zheng, X., Cairns, T.C., Zhang, Z., Wang, D., Zheng, P., Sun, J.: Disruption or reduced expression of the orotidine-5′-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger. Microb. Cell Factories 19, 1–12 (2020)

    Google Scholar 

  40. Zhang, N., Jiang, J.C., Yang, J., Wei, M., Zhao, J., Xu, H., Yu, L.: Citric acid production from acorn starch by tannin tolerance mutant Aspergillus niger AA120. Appl. Biochem. Biotechnol. 188, 1–11 (2019)

    Google Scholar 

  41. Adeoye, A.O., Lateef, A.: Biotechnological valorization of cashew apple juice for the production of citric acid by a local strain of Aspergillus niger LCFS 5. J. Genet. Eng. Biotechnol. 19, 137 (2021)

    Google Scholar 

  42. Domsch, K.H., Gams, W., Anderson, T.H.: Compendium of soil fungi. 2nd Edition. Eching, IHV-Verlag. 672 p. (2007)

  43. White, T.J., Bruns, T., Lee, S., Taylor, J.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, New York (1990)

    Google Scholar 

  44. Adebayo, E.A., Oloke, J.K., Yadav, A., Barooah, M., Bora, T.C.: Improving yield performance of Pleurotus pulmonarius through hyphal anastomosis fusion of dikaryons. World J. Microbiol. Biotechnol. 29, 1029–1037 (2013)

    Google Scholar 

  45. Bhattacharjee, I., Baruah, P.K.: Comparison of locally available carbon rich substrates for augmented microbial production of citric acid with mutant Aspergillus niger S-6 strain. J. Pharmacog. Phytochem. 8, 2961–2964 (2019)

    Google Scholar 

  46. Kamalambigeswari, R., Alagar, S., Sivvaswamy, N.: Strain improvement through mutation to enhance pectinase yield from Aspergillus niger and molecular characterization of polygalactouronase gene. J. Pharmaceut. Sci. Res. 10, 989–994 (2018)

    Google Scholar 

  47. Ajala, A.S., Adeoye, A.O., Olaniyan, S.A., Fasonyin, O.T.: A study on effect of fermentation conditions on citric acid production from cassava peels. Sci. Afr. 8, e00396 (2020)

    Google Scholar 

  48. Umarov, U.A., Maslov, O.Y., Kolisnyk, S.V., Fathullaeva, M.: Development and validation of the conductometric titration method of quantitative determination of free organic acids in the anise fruits. Eur. J. Mol. Clin. Med. 7, 3874–3883 (2020)

    Google Scholar 

  49. Dienye, B.N., Ahaotu, I., Agwa, O.K., Odu, N.N.: Citric acid production potential of Aspergillus niger using Chrysophyllum albidum peel. Adv. Biosci. Biotechnol. 9, 190–203 (2018)

    Google Scholar 

  50. Taguchi, G.: Introduction to Quality Engineering: Designing Quality into Products and Processes. American Supplier Institute, Dearborn (1986)

    Google Scholar 

  51. Chou, W.J., Sun, C.H., Yu, G.P., Huang, J.H.: Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using design of experiment method. Mater. Chem. Phys. 82, 228–236 (2003)

    Google Scholar 

  52. Tsang, C.C., Tang, J.Y., Lau, S.K., Woo, P.C.: Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era–past, present and future. Comput. Struct. Biotechnol. J. 16, 197–210 (2018)

    Google Scholar 

  53. Zakaria, L.: Microscopic characterization of two black Aspergillus, A. niger and A. aculeatus from different substrates and indoor environment. Malays. J. Microsc. 16, 30–36 (2020)

    Google Scholar 

  54. Barwant, M., Lavhate, N.: Isolation and maintenance of fungal pathogens Aspergillus niger and Aspergillus flavus. Int. J. Appl. Nat. Sci. 9, 47–52 (2020)

    Google Scholar 

  55. Khandagale, A.B., Gangavane, S.C., Kulkarni, G.Y., Mandle, G.S., Upadhye, V.J.: Comparative analysis of citric acid production by Aspergillus niger using different media. Plant Cell Biotechnol. Mol. Biol. 22, 77–85 (2021)

    Google Scholar 

  56. Khoshroo, S.M.R.: Investigation of increased production of citric acid by Aspergillus niger mutant native strains. Appl. Biol. 33, 46–60 (2020)

    Google Scholar 

  57. Angumeenal, A.R., Venkappayya, D.: An overview of citric acid production. LWT-Food Sci. Technol. 50, 367–370 (2013)

    Google Scholar 

  58. Show, P.L., Oladele, K.O., Siew, Q.Y., Zakry, F.A.A., Lan, J.C., Ling, T.C.: Overview of citric acid production from Aspergillus niger. Front. Life Sci. 8, 271–283 (2015)

    Google Scholar 

  59. Rani, G.B., Chiranjeevi, T., Chandel, A.K., Satish, T., Radhika, K., Narasu, M.L., Uma, A.: Optimization of selective production media for enhanced production of xylanases in submerged fermentation by Thielaviopsis basicola MTCC 1467 using L16 orthogonal array. J. Food Sci. Technol. 51, 2508–2516 (2014)

    Google Scholar 

  60. Das, S.P., Gupta, A., Das, D., Goyal, A.: Enhanced bioethanol production from water hyacinth (Eichhornia crassipes) by statistical optimization of fermentation process parameters using Taguchi orthogonal array design. Int. Biodeter. Biodegr. 109, 174–184 (2016)

    Google Scholar 

  61. Yadegary, M., Hamidi, A., Alavi, S.A., Khodaverdi, E., Yahaghi, H., Sattari, S., Bagherpour, G., Yahaghi, E.: Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi method. Jundishapur J. Microbiol. 6, e7625 (2013)

    Google Scholar 

  62. Yu, D., Shi, Y., Wang, Q., Zhang, X., Zhao, Y.: Application of methanol and sweet potato vine hydrolysate as enhancers of citric acid production by Aspergillus niger. Bioresour. Bioprocess. 4, 35 (2017)

    Google Scholar 

  63. Ayeni, A., Daramola, M.O., Taiwo, O., Olanrewaju, O.I., Oyekunle, D.T., Sekoai, P.T., Elehinafe, F.B.: Production of citric acid from the fermentation of pineapple waste by Aspergillus niger. Open Chem. Eng. J. 13, 88–96 (2019)

    Google Scholar 

  64. Vidya, P., Annapoorani, A.M., Jalalugeen, H.: Optimization and utilisation of various fruit peel as substrate for citric acid production by Aspergillus niger isolated from orange and carrot. Pharma Innov. J. 7, 141–146 (2018)

    Google Scholar 

  65. Zafar, M., Bano, H.S., Anwar, Z.: Orange peels valorization for citric acid production through single and co-culture fermentation. Jordan J. Biol. Sci. 14, 261–266 (2021)

    Google Scholar 

  66. Chergui, D., Akretche-Kelfat, S., Lamoudi, L., Al-Rshaidat, M., Boudjelal, F., Ait-Amar, H.: Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. Saudi J. Biol. Sci. (2021). https://doi.org/10.1016/j.sjbs.2021.08.013

    Article  Google Scholar 

Download references

Acknowledgements

The assistance of Dr. T.B. Asafa of the Department of Mechanical Engineering, LAUTECH, Ogbomoso, Nigeria on the Taguchi optimization technique is duly acknowledged.

Funding

This work was not funded by any private or public entity.

Author information

Authors and Affiliations

Authors

Contributions

AL conceived, supervised, interpreted the results, wrote part of the manuscript and edited the manuscript; AOA carried out all the laboratory investigations, collected and analyzed the data and wrote part of the manuscript.

Corresponding author

Correspondence to Agbaje Lateef.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeoye, A.O., Lateef, A. Improving the Yield of Citric Acid Through Valorization of Cashew Apple Juice by Aspergillus niger: Mutation, Nanoparticles Supplementation and Taguchi Technique. Waste Biomass Valor 13, 2195–2206 (2022). https://doi.org/10.1007/s12649-021-01646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01646-0

Keywords

Navigation