Skip to main content

Advertisement

Log in

Valorization of Biomass Pulping Waste as Effective Additive for Enhancing the Performance of Films Based on Liquid Crystal Hydroxypropyl-Cellulose Nanocomposites

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Utilization of wastes from some biomass-based industries in production of nanomaterials is vital in the green chemistry field. This work deals with valorization of lignin from paper making by-product for synthesizing lignin nanoparticles (LNPs) and evaluating its role on performance of film made from liquid crystal hydroxypropyl cellulose (HPC), in comparison withdifferent carbon nanoallotropes. In this respect LNPs, graphene oxide and bagasse-based carbon quantum dots and carbon oxide were synthesized and incorporated with HPC during film formation. The effective behavior of LNPs, especially that produced from using highly polar solvent, on performance of HPC film was evidenced, from examiningpolarized light microscope together with TEM, SEM, XRD, FTIR, TGA as well as mechanical tests. The results showed that LNPs provided the HPC-nanocomposite film with acceptable thermal stability and mechanical properties, together with distinct complex mixed colorful texture, lines nearly like Grandjean-Cano lines aligned (PO images) and the planar layered morphology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdel-Hadi, A.K., Hosny, W.M., Basta, A.H., El-Saied, H.: Metal chelates with some cellulose derivatives. II. Preparation and characterization of Co(II)-CMC complexes. Polym. Plast. Technol. Eng. 33(6), 781–791 (1994)

    Article  Google Scholar 

  2. Thakur, V.K., Thaku, M.K., Gupta, R.K.: Development of functionalized cellulosic biopolymers by graft copolymerization. Int. J. Biol. Macromol. 62, 44–51 (2013)

    Article  Google Scholar 

  3. Basta, A.H., Khwaldia, K., Aloui, H., El-Saied, H.: Enhancing the performance of carboxymethyl cellulose by chitosan in producing barrier coated paper sheets. NPPRJ 30(4), 617–625 (2015)

    Google Scholar 

  4. Basta, A.H., El-Saied, H., Baraka, A.M.: Performance of carbon xerogels in the production of environmentally friendly urea formaldehyde-bagasse composites. Clean 45(6), e201600524 (2017)

    Google Scholar 

  5. Lotfy, V.F., Fathy, N.A., Basta, A.H.: Novel approach for synthesizing different shapes of carbon nanotubes from rice straw residue. J. Environ. Chem. Eng. 6, 6263–6274 (2018)

    Article  Google Scholar 

  6. Basta, A.H., Lotfy, V.F., Hasanin, M.S., Trens, P., El-Saied, H.: Efficient treatment of rice byproducts for preparing high-performance activated carbons. J. Clean. Prod. 207, 284–295 (2019)

    Article  Google Scholar 

  7. Hanna, D.H., Lotfy, V.F., Basta, A.H., Saad, G.R.: Comparative evaluation for controlling release of niacin from protein-and cellulose-chitosan based hydrogelsInt. J. Biol. Macromol. 150, 228–237 (2020)

    Article  Google Scholar 

  8. Ates, B., Koytepe, S., Ulu, A., Gurses, C., Thakur, V.K.: Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120, 9304–9362 (2020)

    Article  Google Scholar 

  9. Basta, A.H., Lotfy, V.F., Micky, J.A., Salem, A.M.: Liquid crystal behavior of cellulose nanoparticles-ethyl cellulose composites: preparation, characterization, and rheology. J. Appl. Polym. Sci. 138(12), 1–13 (2021)

    Article  Google Scholar 

  10. Nair, S.S., Yan, N.: Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22, 3137–3150 (2015)

    Article  Google Scholar 

  11. Tian, D., Hu, J., Bao, J., Chandra, R.P., Saddler, J.N., Lu, C.: Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol. Biofuels 10, 1–11 (2017)

    Article  Google Scholar 

  12. Shimamoto, S., Uraki, Y., Sano, Y.: Optical properties and photopolymerization of liquid crystalline (acetyl) (ethyl) cellulose/acrylic acid system. Cellulose 7, 347–358 (2000)

    Article  Google Scholar 

  13. Suto, S., Nishibori, W., Kudo, K., Karasawa, M.: Lyotropic liquid crystalline solutions of hydroxypropyl cellulose in water: effect of salts on the turbidity and viscometric behavior. J. Appl. Polym. Sci. 37, 737–749 (1989)

    Article  Google Scholar 

  14. Boott, C.E., Tran, A., Hamad, W.Y., MacLachlan, M.J.: Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem. Int. Ed. 59(1), 226–231 (2020)

    Article  Google Scholar 

  15. Kim, D.Y., Jeong, K.U.: Light responsive liquid crystal soft matters: structures, properties, and applications. Liq. Cryst. Today 28(2), 34–45 (2019)

    Article  MathSciNet  Google Scholar 

  16. Li, L.-S., Walda, J., Manna, L., Alivisatos, A.P.: Semiconductor nanorod liquid crystals. Nano Lett. 2, 557–560 (2002)

    Article  Google Scholar 

  17. Thorkelsson, K., Bai, P., Xu, T.: Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today 10, 48–66 (2015)

    Article  Google Scholar 

  18. Paulchamy, B., Arthi, G., Lignesh, B.D.: A simple approach to step wise synthesis of grapheme oxide nanomaterial. J. Nanomed. Nanotechnol. 6(1), 1000253 (2015)

    Google Scholar 

  19. Wojtoniszak, M., Mijowska, E.: Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J. Nanopart. Res. 14, 1248 (2012)

    Article  Google Scholar 

  20. Liu, L., An, M., Xing, S., Shen, X., Yang, C., Xu, X.: Preparation of graphene oxide based on expanded graphite. Adv. Mater. Res. 881–883, 1083–1088 (2014)

    Article  Google Scholar 

  21. Yin, P.T., Shah, S., Chhowalla, M., Lee, K.-B.: Design, synthesis, and characterization of graphene−nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)

    Article  Google Scholar 

  22. Cruz-Silva, R., Endo, M., Terrones, M.: Graphene oxide films, fibers, and membranes. Nanotechnol. Rev. 5(4), 377–391 (2016)

    Article  Google Scholar 

  23. Lin, F., Tong, X., Wang, Y., Bao, J., Wang, Z.M.: Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display. Nanoscale Res. Lett. 10, 1–16 (2015)

    Article  Google Scholar 

  24. Arshadi Pirlar, M., Rezaei Mirghaed, M., Honarmand, Y., Movahed, S.M.S., Karimzadeh, R.: Light scattering through the graphene oxide liquid crystal in a micro-channel. Opt. Express 27(17), 23864–23874 (2019)

    Article  Google Scholar 

  25. Kim, J.E., Han, T.H., Lee, S.H., Kim, J.Y., Ahn, C.W., Yun, J.M., Kim, S.O.: Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011)

    Article  Google Scholar 

  26. Baweja, H., Jeet, K.: Economical and green synthesis of graphene and carbon quantum dots from agricultural waste. Mater. Res. Express 6, 0850g8 (2019)

    Article  Google Scholar 

  27. Kim, D., Cheon, J., Kim, J., Hwang, D., Hong, I., Kwon, O.H., Park, W.H., Cho, D.: Extraction and characterization of lignin from black liquor and preparation of biomass-based activated carbon there from. Carbon Lett. 22, 81–88 (2017)

    Google Scholar 

  28. Lievonen, M., Valle-Delgado, J.J., Mattinen, M.L., Hult, E.L., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setälä, H., Österberg, M.: A simple process for lignin nanoparticle preparation. Green Chem. 18, 1416–1422 (2015)

    Article  Google Scholar 

  29. Thambiraj, S., RaviShankaran, D.: Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443 (2016)

    Article  Google Scholar 

  30. Levdik, I., Inshakov, M.D., Misyurova, E.P., Nikitin, V.N.: Study of pulp structure by infrared spectroscopy. Vses. Nauch. Issled. Irst. Tsellyul. Bum. Prom. 52, 109–111 (1967)

    Google Scholar 

  31. Coat, A.W., Redfern, J.P.: Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)

    Article  Google Scholar 

  32. Basta, A.H., El-Saied, H., Lotfy, V.F.: Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites. RSC Adv. 4(42), 21794–21801 (2014)

    Article  Google Scholar 

  33. ISO 527–1:2012 (E) International Standard-Plastics-Determination of tensile properties. ISO 527–1.(2012)

  34. Lievonen, M., Valle-Delgado, J.J., Mattinen, M.L., Hult, E.L., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setälä, H., Österberg, M.: A simple process for lignin nanoparticle preparation. Green Chem. 18(5), 1416–1422 (2016)

    Article  Google Scholar 

  35. Aziz, M., Halim, F.S.A., Jaafar, J.: Preparation and characterization of graphene membrane electrode assembly. J. Teknol. 69(9), 11–14 (2014)

    Google Scholar 

  36. Thambiraj, S., Ravi Shankaran, D.: Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443 (2016)

    Article  Google Scholar 

  37. Zheng, F., Wang, Z., Chen, J., Li, S.: Synthesis of carbon quantum dot-surface modified P25 nanocomposites for photocatalytic degradation of p-nitrophenol and acid violet 43. RSC Adv. 4(58), 30605–30609 (2014)

    Article  Google Scholar 

  38. Somanathan, T., Prasad, K., Ostrikov, K., Saravanan, A., Krishna, V.M.: Graphene oxide synthesis from agro waste. Nanomater. 52, 826–834 (2015)

    Article  Google Scholar 

  39. Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Rahman, M.A., Othman, M.H.: Synthesis of graphene oxide nanosheets via modified Hummers’ method and its physicochemical properties. J. Teknol. 74(1), 195–198 (2015)

    Google Scholar 

  40. Hu, J., Shen, D., Wu, S., Zhang, H., Xiao, R.: Effect of temperature on structure evolution in char from hydrothermal degradation of lignin. J. Anal. Appl. Pyrol. 106, 118–124 (2014)

    Article  Google Scholar 

  41. Pirlar, M.A., Mirghaed, M.R., Honarmand, Y., Movahed, S.M.S., Karimzadeh, A.R.: Light scattering through the graphene oxide liquid crystal in a micro-channel. Opt. Express 27(17), 23864–23874 (2019)

    Article  Google Scholar 

  42. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  Google Scholar 

  43. Myint, A.A., Lee, H.W., Seo, B., Son, W.S., Yoon, J., Yoon, T.J., Park, H.J., Yu, J., Yoon, J., Lee, Y.W.: One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem. 18, 2129–2146 (2016)

    Article  Google Scholar 

  44. Nair, V., Panigrahy, A., Vinu, R.: Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 254, 491–502 (2014)

    Article  Google Scholar 

  45. Klapiszewski, Ł, Wysokowski, M., Majchrzak, I., Szatkowski, T., Nowacka, M., Siwińska-Stefańska, K., Szwarc-Rzepka, K., Bartczak, P., Ehrlich, H., Jesionowski, T.: Preparation and characterization of multifunctional chitin/lignin materials. J. Nanomater. 2013, 425726 (2013)

    Article  Google Scholar 

  46. Azimvand, J., Didehban, K., Mirshokrai, S.A.: Preparation and characterization of lignin polymeric nanoparticles using the green solvent ethylene glycol: acid precipitation technology. BioResources 13(2), 2887–2889 (2018)

    Article  Google Scholar 

  47. Echeverria, C., Almeida, P.L., Feio, G., Figueirinhas, J.L., Godinho, M.H.: A cellulosic liquid crystal pool for cellulose nanocrystals: structure and molecular dynamics at high shear rates. Eur. Polym. J. 72, 72–81 (2015)

    Article  Google Scholar 

  48. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)

    Article  Google Scholar 

  49. Abdul Khalil, H.P.S., Marliana, M.M., Alshammari, T.: Material properties of epoxy-reinforced biocomposites with lignin from empty fruit bunch as cuting agent. BioResources 6(4), 5206–5223 (2011)

    Google Scholar 

  50. Pokharel, P., Lee, D.S.: Thermal and mechanical properties of reduced graphene oxide/polyurethane nanocomposite. J. Nanosci. Nanotechnol. 14, 5718–5721 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors present many thanks to the National Research Centre for supporting this work, by facilities, as article delivered from MS. Thesis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf H. Basta.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basta, A.H., Lotfy, V.F. & Salem, A.M. Valorization of Biomass Pulping Waste as Effective Additive for Enhancing the Performance of Films Based on Liquid Crystal Hydroxypropyl-Cellulose Nanocomposites. Waste Biomass Valor 13, 2217–2231 (2022). https://doi.org/10.1007/s12649-021-01631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01631-7

Keywords

Navigation