Skip to main content
Log in

Valorization of Olive Pomace: Extraction of Maslinic and Oleanolic by Using Closed Vessel Microwave Extraction System

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Maslinic and oleanolic acids are some of the valuable bioactive compounds present in olive pomace. The aim of this study is to investigate the direct use of wet olive pomace (without drying) for the extraction of these acids by taking advantage of the microwave technique and to determine the effect of extraction parameters on yield and quality.

Methods

The effects of microwave power (150–300 Watt), extraction time (4–20 min), and solvent to solid ratio (2.5–10) on extraction efficiency were examined. The extract further separated into maslinic and oleanolic acid fractions. The antioxidant activity and the antimicrobial effect of both extract and acid fractions were determined.

Results

Optimum conditions which provide the highest yield were found as 250 Watt, 12 min, and 10:1 for microwave power, time, and solvent to solid ratio, respectively. The total amount of maslinic and oleanolic acid obtained under optimum conditions was 26 ± 1.27 mg/g dry matter corresponding to 98.21% of the extract. The percentages of triterpenic acids present in the extract were 80% maslinic acid and 20% oleanolic acid. According to the DPPH (% inhibition 22.9 ± 0.8) and FRAP (263.1 ± 3.9 μM TE) results the maslinic acid fraction has shown the highest antioxidant activity. In addition, it was observed that the maslinic acid fraction had almost as much antimicrobial effect on the microorganisms as amoxicillin.

Conclusion

Microwave-assisted extraction could be an efficient way for the extraction of maslinic and oleanolic acids from wet olive pomace with minimal processing and high yield.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The online version contains supplementary material available at https://doi.org/10.6084/m9.figshare.14420702.v4

Code Availability

Not applicable.

References

  1. Food and Agriculture Organization of the United Nations. FAOSTAT statistical database. [Rome]: FAO (2019)

  2. Roig, A., Cayuela, M.L., Sanchez-Monedero, M.A.: An overview on olive mill wastes and their valorisation methods. Waste Manage. 26, 960–969 (2006). https://doi.org/10.1016/j.wasman.2005.07.024

    Article  Google Scholar 

  3. Romero, C., Garcia, A., Medina, E., Ruiz-Mendez, M.V., Castro, A., Brenes, M.: Triterpenic acids in table olives. Food Chem. 118, 670–674 (2010). https://doi.org/10.1016/j.foodchem.2009.05.037

    Article  Google Scholar 

  4. Rufino-Palomares, E.E., Reyes-Zurita, F.J., García-Salguero, L., Mokhtari, K., Medina, P.P., Lupiáñez, J.A., Peragón, J.: Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human colon-cancer cells. J. Proteomics. 83, 15–25 (2013). https://doi.org/10.1016/j.jprot.2013.02.031

    Article  Google Scholar 

  5. Ghafoor, K.: Antioxidant properties of oleanolic acid from grape peel. Agro. Food Ind Hi-Tech. 25, 54–57 (2014)

    Google Scholar 

  6. Jamkhande, P.G., Pathan, S.K., Wadher, S.J.: In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids. Int. J. Mycobacteriol. 5, 417–425 (2016). https://doi.org/10.1016/j.ijmyco.2016.06.020

    Article  Google Scholar 

  7. Nur, N.M., Al-Jasabi, S.M.: Antioxidant properties of maslinic acid extracted from Plumeria rubra leaves. IJCRR 8, 20178–20183 (2017). https://doi.org/10.15520/ijcrr/2017/8/07/160

    Article  Google Scholar 

  8. Özkan, G., Karacabey, E., Arslan, N., Odabasi, N.: Optimisation of microwave-assisted extraction of triterpenoic acids from olive mill waste using response surface methodology. Qual. Assur. Saf. Crop Foods. 9, 179–185 (2017). https://doi.org/10.3920/qas2015.0783

    Article  Google Scholar 

  9. Xie, P., Huang, L., Zhang, C., Deng, Y., Wang, X., Cheng, J.: Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 276, 662–674 (2019). https://doi.org/10.1016/j.foodchem.2018.10.079

    Article  Google Scholar 

  10. Alexandraki, V., Georgalaki, M., Papadimitriou, K., Anastasiou, R., Zoumpopoulou, G., Chatzipavlidis, I., Papadelli, M., Vallis, N., Moschochoritis, K., Tsakalidou, E.: Determination of triterpenic acids in natural and alkaline-treated Greek table olives throught the fermentation process. LWT 5, 609–613 (2014). https://doi.org/10.1016/j.lwt.2014.04.005

    Article  Google Scholar 

  11. Li, J., Zu, Y.-G., Fu, Y.J., Yang, Y.-C., Li, S.-M., Li, Z.-N., Wink, M.: Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innov. Food Sci. Emerg. Technol. 11, 637–643 (2010). https://doi.org/10.1016/j.ifset.2010.06.004

    Article  Google Scholar 

  12. Medina, E., Romero, C., Brenes, M.: Residual olive paste as a source of phenolic compounds and triterpenic acids. Eur. J. Lipid Sci. Technol. 120, 1700368 (2018). https://doi.org/10.1002/ejlt.201700368

    Article  Google Scholar 

  13. Fernandez-Pastor, I., Fernandez-Hernandez, A., Perez-Criado, S., Rivas, F., Martinez, A., Garcia-Granados, A., Parra, A.: Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. J. Sep. Sci. 40, 1209–1217 (2017). https://doi.org/10.1002/jssc.201601130

    Article  Google Scholar 

  14. Garcia-Granados, A.: Process for the industrial recovery of oleanolic and maslinic acids contained in the olive milling byproducts, PCT. Int. Appl. WO 9804331 (1998)

  15. Kuno, N., Shinohara, G.: Method for the preparation of oleanolic acid and/or maslinic acid. US Patent 6740778B2 (2004)

  16. Amarni, F., Kadi, H.: Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction. Innov. Food Sci. Emerg. Technol. 11, 322–327 (2010). https://doi.org/10.1016/j.ifset.2010.01.002

    Article  Google Scholar 

  17. Yanık, D.K.: Alternative to traditional olive pomace oil extraction systems: microwave-assisted solvent extraction of oil from wet olive pomace. LWT 77, 45–51 (2017). https://doi.org/10.1016/j.lwt.2016.11.020

    Article  Google Scholar 

  18. Pérez-Serradilla, J.A., Japon-Lujan, R., de Castro, M.L.: Simultaneous microwave-assisted solid–liquid extraction of polar and nonpolar compounds from alperujo. Anal. Chim. Acta 602, 82–88 (2007). https://doi.org/10.1016/j.aca.2007.09.008

    Article  Google Scholar 

  19. Dontha, S., Kamurthy, H., Mantripragada, B.R.: Phytochemical characterization of active constituents from extracts of Ixora javanica D.C flowers. J. Chromatogr. Sep. Tech. 6, 294 (2015). https://doi.org/10.4172/2157-7064.1000294

    Article  Google Scholar 

  20. Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T.: Use of a free radical method to evaluate antioxidant activity. LWT 28, 25–30 (1995). https://doi.org/10.1016/s0023-6438(95)80008-5

    Article  Google Scholar 

  21. Benzie, I.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  22. EUCAST: European Committee on Antimicrobial Susceptibility Testing breakpoint tables for interpretation of MICs and zone diameters. (2015)

  23. Mandal, V., Mandal, S.: Design and performance evaluation of a microwave based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: oleanolic acid. Biochem. Eng. J. 50, 63–70 (2010). https://doi.org/10.1016/j.bej.2010.03.005

    Article  Google Scholar 

  24. Ameer, K., Shahbaz, H.M., Kwon, J.-H.: Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr. Rev. Food Sci. Food Saf. 16, 295–315 (2017). https://doi.org/10.1111/1541-4337.12253

    Article  Google Scholar 

  25. Xiao, W., Han, L., Shi, B.: Microwave-assisted extraction of flavonoids from Radix Astragali. Sep. Purif. Technol. 62, 614–618 (2008). https://doi.org/10.1016/j.seppur.2008.03.025

    Article  Google Scholar 

  26. Guo, Z., Jin, Q., Fan, G., Duan, Y., Qin, C., Wen, M.: Microwave-assisted extraction of effective constituents from a Chinese herbal medicine Radix puerariae. Anal Chim Acta. 436, 41–47 (2001). https://doi.org/10.1016/s0003-2670(01)00900-x

    Article  Google Scholar 

  27. Fan, H., Yang, G.-Z., Zheng, T., Mei, Z.-N., Liu, X.-M., Chen, Y., Chen, S.: Chemical constituents with free-radical-scavenging activities from the stem of Microcos paniculata. Molecules 15, 5547–5560 (2010). https://doi.org/10.3390/molecules15085547

    Article  Google Scholar 

  28. Çulhaoğlu, B., Hatipoğlu, S.D., Dönmez, A.A., Topçu, G.: Antioxidant and anticholinesterase activities of lupane triterpenoids and other constituents of Salvia trichoclada. Med. Chem. Res. 4, 3831–3837 (2015). https://doi.org/10.1007/s00044-015-1424-7

    Article  Google Scholar 

  29. Velasco, J., Holgado, F., Márquez-Ruiz, G., Ruiz-Méndez, M.V.: Concentrates of triterpenic acids obtained from crude olive pomace oils: characterization and evaluation of their potential antioxidant activity. J. Sci. Food Agric. 98, 4837–4844 (2018). https://doi.org/10.1002/jsfa.9012

    Article  Google Scholar 

  30. Bai, X., Lai, T., Zhou, T., Li, Y., Li, X., Zhang, H.: In vitro antioxidant activities of phenols and oleanolic acid from mango peel and their cytotoxic effect on A549 cell line. Molecules 23, 1–8 (2018). https://doi.org/10.3390/molecules23061395

    Article  Google Scholar 

  31. Acebey-Castellon, I.L., Voutquenne-Nazabadioko, L., Thi Mai, H.D., Roseau, N., Bouthagane, N., Muhammad, D., Debar, E.L.M., Gangloff, S.C., Litaudon, M., Sevenet, T., Hung, N.V., Lavaud, C.: Triterpenoid saponins from Symplocos lancifolia. J. Prod. 74, 163–168 (2011). https://doi.org/10.1021/np100502y

    Article  Google Scholar 

  32. Horiuchi, K., Shiota, S., Hatano, T., Yoshida, T., Kuroda, T., Tsuchiya, T.: Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm. Bull. 30, 1147–1149 (2007). https://doi.org/10.1248/bpb.30.1147

    Article  Google Scholar 

  33. Chouaïb, K., Hichri, F., Nguir, A., Daami-Remadi, M., Elie, N., Touboul, D., Jannet, H.B., Hamza, M.A.: Semi-synthesis of new antimicrobial esters from the natural oleanolic and maslinic acids. Food Chem. 183, 8–17 (2015). https://doi.org/10.1016/j.foodchem.2015.03.018

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript. DKY, FG: supervision, conceptualization; DKY, SİB: investigation, methodology, writing-original draft, FG: writing-review and editing.

Corresponding author

Correspondence to Derya Koçak Yanık.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biltekin, S.İ., Göğüş, F. & Yanık, D.K. Valorization of Olive Pomace: Extraction of Maslinic and Oleanolic by Using Closed Vessel Microwave Extraction System. Waste Biomass Valor 13, 1599–1608 (2022). https://doi.org/10.1007/s12649-021-01620-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01620-w

Keywords

Navigation