Skip to main content
Log in

Quality of Microfibrillated Cellulose Produced from Unbleached Pine Sawdust Pulp as an Environmentally Friendly Source

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The implementation of biorefineries of sawmill residues is an opportunity in countries or regions with a high rate of afforestation. Microfibrillated cellulose (MFC) is a high-value product that can be obtained from the cellulosic fraction. However, many critical aspects involved in its production and characterization are not clarified yet. This study analyzes the physical and morphological properties of laboratory-obtained MFC from different sources, among them, hardwood and softwood industrial pulps and unbleached pine sawdust pulps from conventional and non-conventional processes, aiming to evaluate and predict the relationship between the characteristics of the pulps and those of MFC. MFC dimensions and the properties of the MFC suspensions (viscosity, transmittance, others) were determined. The results showed that unbleached pine sawdust pulp is a low-cost and environmentally friendly raw material for MFC production and that this MFC can be produced with less energy and on a small scale than MFC from industrial pulps. A principal component analysis was assessed, showing that pine pulps from sawdust produce MFC of similar characteristics to conventional pine pulps from chips (high relative transmittance, short microfibrils, and small widths visible with the optical microscope), so fiber length of the original pulp is not so relevant than high fiber width and fiber coarseness.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blair, M.: Development of forest biorefining in Canada: overcoming the feedstock barrier. 160: (2013)

  2. Abdul Khalil, H.P.S., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M.: Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydr. Polym. 99, 649–665 (2014). https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  Google Scholar 

  3. Hubbe, M.A.: Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources. 12, 9556–9661 (2017). https://doi.org/10.15376/biores.12.4.Hubbe

    Article  Google Scholar 

  4. Andrade, A., Pereira Soto, M.: Métodos de deconstrucción de la pared celular. In: Vallejos, M.E. and Area, M.C. (eds.) Producción y Usos de la Nanocelulosa Fibrilada y Microfibrilada. pp. 46–72: (2019)

  5. Kangas, H., Lahtinen, P., Sneck, A., Saariaho, A., Laitinen, O., Hellén, E.: Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nordic Pulp Pap. Res. J. 29, 129 (2014)

    Article  Google Scholar 

  6. Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90, 735–764 (2012). https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  Google Scholar 

  7. Abe, K., Yano, H.: Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19, 1907–1912 (2012). https://doi.org/10.1007/s10570-012-9784-3

    Article  Google Scholar 

  8. Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials, 2nd edn. Walter de Gruyter GmbH, Berlin (2017)

    Book  Google Scholar 

  9. Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010). https://doi.org/10.1007/s10570-010-9405-y

    Article  Google Scholar 

  10. Saito, T., Isogai, A.: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983–1989 (2004). https://doi.org/10.1021/bm0497769

    Article  Google Scholar 

  11. Michelin, M., Gomes, D.G., Romaní, A., Polizeli, M., de Teixeira, L.T.M.: Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 25, 3411 (2020). https://doi.org/10.3390/molecules25153411

    Article  Google Scholar 

  12. Ribeiro, R.S.A., Pohlmann, B.C., Calado, V., Bojorge, N., Pereira, N.: Production of nanocellulose by enzymatic hydrolysis. Trends and challenges. Eng. Life Sci. 19, 279 (2019)

    Article  Google Scholar 

  13. Osong, S.H., Norgren, S., Engstrand, P.: Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23, 93 (2016)

    Article  Google Scholar 

  14. Li, P., Sirviö, J.A., Haapala, A., Liimatainen, H.: Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl. Mater. Interfaces 9, 2846–2855 (2017). https://doi.org/10.1021/acsami.6b13625

    Article  Google Scholar 

  15. Chen, Y.W., Lee, H.V., Abd Hamid, S.B.: Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach. Carbohydr. Polym. 157, 1511–1524 (2017). https://doi.org/10.1016/j.carbpol.2016.11.030

    Article  Google Scholar 

  16. Shahi, N., Min, B., Sapkota, B., Rangari, V.K.: Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication. Sustainability 12, 6015 (2020). https://doi.org/10.3390/su12156015

    Article  Google Scholar 

  17. Iwamoto, S., Nakagaito, A., Yano, H.: Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. App. Phys. A 89, 461–466 (2007). https://doi.org/10.1007/s00339-007-4175-6

    Article  Google Scholar 

  18. Dufresne, A.: Cellulose Microfibrils from Potato Tuber Cells: Processing and Characterization of Starch – Cellulose Microfibril Composites. J. Appl. Polym. Sci. 76, 2080–2092 (1999)

    Article  Google Scholar 

  19. Thakur, M.K., Thakur, V.K., Prasanth, R.: Nanocellulose-Based Polymer Nanocomposites: An introduction. In: Thakur, V.K. (ed.) Handbook of Composites from Renewable Materials, Nanocomposites: Science and Fundamentals, pp. 3–13. Wiley, Hoboken (2017)

    Chapter  Google Scholar 

  20. Stone, J.E., Scallan, A.M.: Effect of component removal upon the porous structure of the cell wall of wood. J. Polym. Sci. Part C 11, 13–25 (1965). https://doi.org/10.1002/polc.5070110104

    Article  Google Scholar 

  21. Maloney, T.C., Paulapuro, H.: The formation of pores in the cell wall. J. Pulp Pap. Sci. 25, 430–436 (1999)

    Google Scholar 

  22. Page, D.H.: The Beating of Chemical Pulps – The Action and the Effects. Fundam. of Papermak. 1, 1–38 (1989)

    Google Scholar 

  23. Kerekes, R.J.: Characterizing refining action in PFI mills. Tappi J. 4, 9–14 (2005)

    Google Scholar 

  24. Nair, S.S., Zhu, J.Y., Deng, Y., Ragauskas, A.J.: Characterization of cellulose nanofibrillation by micro grinding. J. Nanopart. Res. (2014). https://doi.org/10.1007/s11051-014-2349-7

    Article  Google Scholar 

  25. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod. 93, 2–25 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  Google Scholar 

  26. Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y., Pawlak, J.J.: A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18, 1097–1111 (2011). https://doi.org/10.1007/s10570-011-9533-z

    Article  Google Scholar 

  27. Djafari Petroudy, S.R., Ghasemian, A., Resalati, H., Syverud, K., Chinga-Carrasco, G.: The effect of xylan on the fibrillation efficiency of DED bleached soda bagasse pulp and on nanopaper characteristics. Cellulose 22, 385–395 (2015). https://doi.org/10.1007/s10570-014-0504-z

    Article  Google Scholar 

  28. Ehman, N.V., Lourenço, A.F., McDonagh, B.H., Vallejos, M.E., Felissia, F.E., Ferreira, P.J.T., Chinga-Carrasco, G., Area, M.C.: Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.165

    Article  Google Scholar 

  29. Duchesne, I., Hult, E., Molin, U., Daniel, G., Iversen, T., Lennholm, H.: The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13 C-NMR. Cellulose. 8, 103–111 (2001). https://doi.org/10.1023/A:1016645809958

    Article  Google Scholar 

  30. He, M., Yang, G., Chen, J., Ji, X., Wang, Q.: Production and Characterization of Cellulose Nanofibrils from Different Chemical and Mechanical Pulps. J. Wood Chem. Technol. 38, 149–158 (2018). https://doi.org/10.1080/02773813.2017.1411368

    Article  Google Scholar 

  31. Ehman, N.V., Felissia, F.E., Tarrés, Q., Vallejos, M.E., Delgado-Aguilar, M., Mutjé, P., Area, M.C.: Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose 27, 10811–10823 (2020). https://doi.org/10.1007/s10570-020-03207-5

    Article  Google Scholar 

  32. Klar, V., Pere, J., Turpeinen, T., Kärki, P., Orelma, H., Kuosmanen, P.: Shape fidelity and structure of 3D printed high consistency nanocellulose. Sci. Rep. 9, 3822 (2019). https://doi.org/10.1038/s41598-019-40469-x

    Article  Google Scholar 

  33. Chinga-Carrasco, G.: Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48, 42–48 (2013). https://doi.org/10.1016/j.micron.2013.02.005

    Article  Google Scholar 

  34. Solala, I., Volperts, A., Andersone, A., Dizhbite, T., Mironova-Ulmane, N., Vehniäinen, A., Pere, J., Vuorinen, T.: Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66, 477–483 (2012). https://doi.org/10.1515/HF.2011.183

    Article  Google Scholar 

  35. Balea, A., Fuente, E., Concepcion Monte, M., Merayo, N., Campano, C., Negro, C., Blanco, A.: Industrial application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives. Molecules 25, 526 (2020)

    Article  Google Scholar 

  36. Maloney, T.C.: Network swelling of TEMPO-oxidized nanocellulose. Holzforschung 69, 207–213 (2015). https://doi.org/10.1515/hf-2014-0013

    Article  Google Scholar 

  37. Chinga-Carrasco, G.: Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res. Lett. 6, 417 (2011). https://doi.org/10.1186/1556-276X-6-417

    Article  Google Scholar 

  38. Sanchez-Salvador, J.L., Monte, M.C., Batchelor, W., Garnier, G., Negro, C., Blanco, A.: Characterizing highly fibrillated nanocellulose by modifying the gel point methodology. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2019.115340

    Article  Google Scholar 

  39. Ang, S., Haritos, V., Batchelor, W.: Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose 26, 4767–4786 (2019). https://doi.org/10.1007/s10570-019-02400-5

    Article  Google Scholar 

  40. Ogawa, Y., Putaux, J.L.: Transmission electron microscopy of cellulose. Part 2: technical and practical aspects. Cellulose 26, 17–34 (2019). https://doi.org/10.1007/s10570-018-2075-x

    Article  Google Scholar 

  41. Simon, M., Barrufaldi, S., Clauser, N., Vallejos, M.E., Area, M.C.: Residuos de Industrialización Primaria de la Madera como materia prima para biorrefinerías. Estudio de localización en Misiones (Argentina) (2017)

  42. Clauser, N.M., Area, M.C., Felissia, F.E., Vallejos, M.E., Gutiérrez, S.: Techno-economic assessment of carboxylic acids, furfural, and pellet production in a pine sawdust biorefinery. Biofuels. Bioprod. Biorefin. (2018). https://doi.org/10.1002/bbb.1915

    Article  Google Scholar 

  43. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos. Mag. J. Sci. 2, 559–572 (1901). https://doi.org/10.1080/14786440109462720

    Article  MATH  Google Scholar 

  44. Hotelling, H.: Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 24, 417–441 (1933) 498–520

    Article  Google Scholar 

  45. Niculescu, B.M., Andrei, G.: Principal component analysis as a tool for enhanced well log interpretation. Rev. Roum. Géophys. 60, 49–61 (2016)

    Google Scholar 

  46. Imlauer, C.M., Ehman, N.V., Area, M.C., Felissia, F.E.: Deslignificación ambientalmente amigable de aserrín de pino mediante una secuencia soda/etanol-oxígeno. In: Congreso Iberoamericano sobre Biorrefinerías (CIAB)/4to Congreso Latinoamericano sobre Biorrefinerías/2do Simposio Internacional sobre Materiales Lignocelulósicos., Concepción, Chile (2015)

  47. Chakraborty, A., Sain, M., Kortschot, M.: Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60, 53–58 (2006). https://doi.org/10.1515/HF.2006.010

    Article  Google Scholar 

  48. Wu, H., Chen, F., Liu, M., Wang, J.: Preparation of microcrystalline cellulose by liquefaction of eucalyptus sawdust in ethylene glycol catalyzed by acidic ionic liquid. BioResources 12, 3766–3777 (2017). https://doi.org/10.15376/biores.12.2.3766-3777

    Article  Google Scholar 

  49. Albornoz-Palma, G., Betancourt, F., Mendonça, R.T., Chinga-Carrasco, G., Pereira, M.: Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr. Polym. 230, 115588 (2020). https://doi.org/10.1016/j.carbpol.2019.115588

    Article  Google Scholar 

  50. Dufresne, A.: Nanocellulose from nature to high permformance tailored materials. Walter De Gruyter GmbH, Berlin (2012)

    Book  Google Scholar 

  51. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  52. Jambu, M.: Exploratory and Multivariate Data Analysis. Elsevier, Amsterdam (1991)

    Book  Google Scholar 

  53. Area, M.C., Popa, V.I.: Wood Fibres for Papermaking. Smithers Pira, Akron (2014)

    Google Scholar 

  54. Seth, R.: Fibre quality factors in papermaking-II. The importance of coarseness. Mat. Res. Soc. Symp. Proc. 197, 143–161 (1990)

    Article  Google Scholar 

  55. Mark, R., Habeger, C., Borch, J., Lyne, B.: Handbook of Physical Testing of Paper, vol. 1. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  56. Page, D.H., Seth, R.S., Jordan, B.D., Barbe, M.C.: Curl, crimps, kinks and microcompressions in pulp fibres: Their origin, measurement and significance. Papermak. Raw Mater. 1985, 183–227 (1985)

    Google Scholar 

  57. Lê, H.Q., Dimic-Misic, K., Johansson, L.-S., Maloney, T., Sixta, H.: Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process. Cellulose 25, 179–194 (2018). https://doi.org/10.1007/s10570-017-1602-5

    Article  Google Scholar 

  58. Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J.: The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresour. Technol. 101, 5961–5968 (2010). https://doi.org/10.1016/j.biortech.2010.02.104

    Article  Google Scholar 

  59. Page, D.H., De Grâce, J.H.: The delamination of fiber walls by beating and refining. Tappi J. 50, 489–495 (1967)

    Google Scholar 

  60. Lee, S.Y., Chun, S.J., Kang, I.A., Park, J.Y.: Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J. Ind. Eng. Chem. 15, 50–55 (2009). https://doi.org/10.1016/j.jiec.2008.07.008

    Article  Google Scholar 

  61. Eriksen, Ø, Syverud, K., Gregersen, Ø: The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord. Pulp Pap. 23, 299–304 (2008)

    Google Scholar 

  62. Zimmermann, T., Bordeanu, N., Strub, E.: Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79, 1086–1093 (2010). https://doi.org/10.1016/j.carbpol.2009.10.045

    Article  Google Scholar 

  63. Ankerfors, M.: Microfibrillated cellulose: energy-efficient preparation techniques and key properties. (2012)

  64. Dias, M.C., Mendonça, M.C., Damásio, R.A.P., Zidanes, U.L., Mori, F.A., Ferreira, S.R., Tonoli, G.H.D.: Influence of hemicellulose content of Eucalyptus and Pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung 73, 1035–1046 (2019). https://doi.org/10.1515/hf-2018-0230

    Article  Google Scholar 

  65. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H.: Dimension change in microfibrillated cellulose from different cellulose sources by wet disk milling and its effect on the properties of PVA nanocomposite. Wood Sci. Technol. 49, 495–506 (2015). https://doi.org/10.1007/s00226-015-0703-2

    Article  Google Scholar 

  66. Dimic-Misic, K., Maloney, T., Gane, P.: Effect of fibril length, aspect ratio and surface charge on ultralow shear-induced structuring in micro and nanofibrillated cellulose aqueous suspensions. Cellulose 25, 117–136 (2018). https://doi.org/10.1007/s10570-017-1584-3

    Article  Google Scholar 

  67. Stelte, W., Sanadi, A.R.: Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind. Eng. Chem. Res. 48, 11211–11219 (2009). https://doi.org/10.1021/ie9011672

    Article  Google Scholar 

  68. Sanchez-Salvador, J.L., Balea, A., Monte, M.C., Negro, C., Miller, M., Olson, J., Blanco, A.: Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard. Sci. Rep. 10, 1–14 (2020). https://doi.org/10.1038/s41598-020-60507-3

    Article  Google Scholar 

  69. Tarrés, Q., Oliver-Ortega, H., Boufi, S., Àngels Pèlach, M., Delgado-Aguilar, M., Mutjé, P.: Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. Int. J. Biol. Macromol. 145, 1199–1207 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.046

    Article  Google Scholar 

  70. Shinoda, R., Saito, T., Okita, Y., Isogai, A.: Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13, 842–849 (2012). https://doi.org/10.1021/bm2017542

    Article  Google Scholar 

  71. Filipova, I., Serra, F., Tarrés, Q., Mutjé, P., Delgado-Aguilar, M.: Oxidative treatments for cellulose nanofibers production: a comparative study between TEMPO-mediated and ammonium persulfate oxidation. Cellulose 27, 10671–10688 (2020). https://doi.org/10.1007/s10570-020-03089-7

    Article  Google Scholar 

  72. Lourenço, A.F., Gamelas, J.A.F., Sarmento, P., Ferreira, P.J.T.: Enzymatic nanocellulose in papermaking – The key role as filler flocculant and strengthening agent. Carbohydr. Polym. 224, 115200 (2019). https://doi.org/10.1016/j.carbpol.2019.115200

    Article  Google Scholar 

  73. Espinosa, E., Tarrés, Q., Delgado-Aguilar, M., González, I., Mutjé, P., Rodríguez, A.: Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23, 837–852 (2016). https://doi.org/10.1007/s10570-015-0807-8

    Article  Google Scholar 

  74. Sixta, H.: Handbook of Pulp. Wiley, Hoboken (2006)

    Book  Google Scholar 

  75. Espinosa, E., Tarrés, Q., Delgado-Aguilar, M., Gonzáles, I., Mutjé, P., Rodríguez, A.: Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23, 837–852 (2015). https://doi.org/10.1007/s10570-015-0807-8

    Article  Google Scholar 

  76. Tarrés, Q., Saguer, E., Pèlach, M.A., Alcalà, M., Delgado-Aguilar, M., Mutjé, P.: The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23, 1433–1445 (2016). https://doi.org/10.1007/s10570-016-0889-y

    Article  Google Scholar 

  77. Delgado-Aguilar, M., González, I., Tarrés, Q., Pèlach, M., Alcalà, M., Mutjé, P.: The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Ind. Crop. Prod. 86, 295–300 (2016). https://doi.org/10.1016/j.indcrop.2016.04.010

    Article  Google Scholar 

  78. Mohtaschemi, M., Dimic-Misic, K., Puisto, A., Korhonen, M., Maloney, T., Paltakari, J., Alava, M.J.: Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21, 1305–1312 (2014). https://doi.org/10.1007/s10570-014-0235-1

    Article  Google Scholar 

  79. Larsson, P.A., Riazanova, A.V., Ciftci, C., Rojas, G., Øvrebø, R., Wågberg, H.H., Berglund, L.: Towards optimised size distribution in commercial microfibrillated cellulose: a fractionation approach. Cellulose 26, 1565–1575 (2019). https://doi.org/10.1007/s10570-018-2214-4

    Article  Google Scholar 

  80. Tanaka, A., Seppänen, V., Houni, J., Sneck, A., Pirkonen, P.: Nanocellulose characterization with mechanical fractionation. Nord. Pulp Pap. Res. J. 27, 689–694 (2012). https://doi.org/10.3183/NPPRJ-2012-27-04-p689-694

    Article  Google Scholar 

  81. Tanaka, A., Hjelt, T., Sneck, A., Korpela, A.: Fractionation of Nanocellulose by Foam Filter. Sep. Sci. Technol. 47, 1771–1776 (2012). https://doi.org/10.1080/01496395.2012.661825

    Article  Google Scholar 

  82. Gamelas, J.A.F., Pedrosa, J., Lourenço, A.F., Mutjé, P., González, I., Chinga-Carrasco, G., Singh, G., Ferreira, P.J.T.: On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72, 28–33 (2015). https://doi.org/10.1016/j.micron.2015.02.003

    Article  Google Scholar 

  83. Foerter-Barth, U., Teipel, U.: Characterization of particles by means of laser light diffraction and dynamic light scattering. Dev. Miner. Process. 13, C1–C1 (2000). https://doi.org/10.1016/S0167-4528(00)80003-4

    Article  Google Scholar 

  84. Xu, R., Di Guida, O.A.: Comparison of sizing small particles using different technologies. Powder Technol. 132, 145–153 (2003). https://doi.org/10.1016/S0032-5910(03)00048-2

    Article  Google Scholar 

  85. Wada, M., Sugiyama, J., Okano, T.: Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J. Appl. Polym. Sci. 49, 1491–1496 (1993). https://doi.org/10.1002/app.1993.070490817

    Article  Google Scholar 

  86. Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-Da-Silva, M.A., Mattoso, L.H.C.: Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydr. Polym. 89, 80–88 (2012). https://doi.org/10.1016/j.carbpol.2012.02.052

    Article  Google Scholar 

  87. Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C., Deng, Y.: Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr. Polym. 97, 695–702 (2013). https://doi.org/10.1016/j.carbpol.2013.05.050

    Article  Google Scholar 

  88. Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y.: A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 97, 226–234 (2013). https://doi.org/10.1016/j.carbpol.2013.04.086

    Article  Google Scholar 

  89. Imlauer, C.M., Ehman, N.V., Area, M.C., Felissia, F.: Soda/ethanol-oxygen delignification of pine sawdust for a biorefinery. Presented at the: 3er Congreso Iberoamericano sobre Biorrefinerías (CIAB), 4to Congreso Latinoamericano sobre Biorrefinerías, y 2do Simposio Internacional sobre Materiales Lignocelulósicos (2015)

  90. Rayung, M., Ibrahim, N., Zainuddin, N., Saad, W., Razak, N., Chieng, B.: The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites. Int. J. Mol. Sci. 15, 14728–14742 (2014). https://doi.org/10.3390/ijms150814728

    Article  Google Scholar 

  91. Iwamoto, S., Abe, K., Yano, H.: The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9, 1022–1026 (2008). https://doi.org/10.1021/bm701157n

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support of the National University of Misiones (UNaM), the National Council of Scientific and Technical Research (CONICET), Argentina, the Laboratory of Forest Products (LPF), the University of Concepción, Chile, the Federal University of Parana, Brasil, and the CYTED Network “Technological Transfer of Nanocellulose Applications in Iberoamérica (NANOCELIA)”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MCA and MEV; Methodology: GG, YSA, SHG, APNF, GIBM, MP, MEC and FEF; Validation: MCA and MEV; Formal analysis: NVE, MCA and MEV; Investigation: GG, NVE, FEF, YSA, GIBM, MP, MCA and MEV; Data curation: MEV and MCA; Writing—original draft preparation: GG, NVE, MCA and MEV; Writing—review and editing, MCA and MEV; Supervision: MCA and MEV; Project administration: MCA; Funding acquisition: MCA and MEV.

Corresponding author

Correspondence to Giselle González.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, G., Ehman, N.V., Aguerre, Y.S. et al. Quality of Microfibrillated Cellulose Produced from Unbleached Pine Sawdust Pulp as an Environmentally Friendly Source. Waste Biomass Valor 13, 1609–1626 (2022). https://doi.org/10.1007/s12649-021-01615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01615-7

Keywords

Navigation