Skip to main content
Log in

Pre-treatment of Soy Okara Using Multi-enzyme Complex on Sugar Extraction and Its Effect on Chemical Composition, Morphological Structure, and Antioxidant Capacity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Okara is a highly perishable food processing by-product from soymilk and tofu manufacture. The present study aimed to optimize the pre-treatment of okara on the extraction of reducing sugars by applying a multi-enzyme complex, Viscozyme, containing a variety of carbohydrases to hydrolyze the okara cell walls. The chemical composition and the morphological structure of enzymatic-treated okara (ETO) were scrutinized.

Methods

Enzymatic hydrolysis pre-treatment was carried out under different enzyme concentrations (5–8%), temperatures (50–60 °C) and pH values (3–4) according to a central composite rotatable design, in which the ranges were chosen based on preliminary study.

Results

The optimal conditions for maximum reducing sugars extraction (4.78 mg/mL) were 8.0% (w/w) of enzyme, 50 °C and pH 3.0 for 4 h hydrolysis time, representing a 158.33 times increment, compared to the sample without enzymatic pre-treatment. The chromatogram from high performance liquid chromatography (HPLC) revealed that the carbohydrates such as glucose, fructose, raffinose and stachyose increased after hydrolysis. Surprisingly, arabinose which was not detected in raw okara (RO) was present in ETO. Scanning electron microscopy (SEM) confirmed the highly structured matrix of okara was unfolded and broken by the action of enzyme pre-treatment while energy-dispersive X-ray spectroscopy (EDS) imparted the changes of elemental components in ETO. The ETO showed higher antioxidant capacity than the control by DPPH, ABTS and FRAP tests.

Conclusion

Enzymatic hydrolysis proved to be an efficient way to enhance the physicochemical properties of okara for possible uses, making this residue into a newly added value product.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Arif, A.B., Sasmitaloka, K.S., WinartiWahyudiono, C.: Effect of liquefaction time and enzyme addition on liquid sugar production from sweet sorghum starch by enzymatic hydrolysis. IOP Conf. Ser.: Earth Environ. Sci. 250, 012042 (2019). https://doi.org/10.1088/1755-1315/250/1/012042

    Article  Google Scholar 

  2. Borg, M. E. (2020). Why is food waste a global issue? [Text]. EPALE—European Commission. https://epale.ec.europa.eu/en/blog/why-food-waste-global-issue. Accessed 29 June 2020

  3. Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T.: Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15(3), 550–583 (2013). https://doi.org/10.1039/C2GC36364J

    Article  Google Scholar 

  4. de Figueiredo, V.R.G., Justus, A., Pereira, D.G., Georgetti, S.R., Ida, E.I., Kurozawa, L.E., de Figueiredo, V.R.G., Justus, A., Pereira, D.G., Georgetti, S.R., Ida, E.I., Kurozawa, L.E.: Production of hydrolysate of okara protein concentrate with high antioxidant capacity and aglycone isoflavone content. Braz. Arch. Biol. Technol. (2019). https://doi.org/10.1590/1678-4324-2019180478

    Article  Google Scholar 

  5. Josie Wexler. (2018). Is soya sustainable? Ethical consumer. https://www.ethicalconsumer.org/food-drink/soya-sustainable. Accessed 4 Sep 2020

  6. Kasai, N., Murata, A., Inui, H., Sakamoto, T., Kahn, R.I.: Enzymatic high digestion of soybean milk residue (okara). J. Agric. Food Chem. 52(18), 5709–5716 (2004). https://doi.org/10.1021/jf035067v

    Article  Google Scholar 

  7. Bernal, B., Chacón, F.J., Jara, A.G., Belleville, M.-P., Lozano, P.: A Sustainable process for enzymatic saccharification of ionic liquid-pretreated cellulosic materials. Green Process. Synth. 3(5), 353–363 (2014). https://doi.org/10.1515/gps-2014-0055

    Article  Google Scholar 

  8. Kasai, N., Imashiro, Y., Morita, N.: Extraction of soybean oil from single cells. J. Agric. Food Chem. 51(21), 6217–6222 (2003). https://doi.org/10.1021/jf034130d

    Article  Google Scholar 

  9. de Figueiredo, V.R.G., Yamashita, F., Vanzela, A.L.L., Ida, E.I., Kurozawa, L.E.: Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. J. Food Sci. Technol. 55(4), 1508–1517 (2018). https://doi.org/10.1007/s13197-018-3067-4

    Article  Google Scholar 

  10. Gama, R., Van Dyk, J.S., Pletschke, B.I.: Optimisation of enzymatic hydrolysis of apple pomace for production of biofuel and biorefinery chemicals using commercial enzymes. 3 Biotech 5(6), 1075–1087 (2015). https://doi.org/10.1007/s13205-015-0312-7

    Article  Google Scholar 

  11. Tyug, T.S., Prasad, K.N., Ismail, A.: Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chem. 123(3), 583–589 (2010). https://doi.org/10.1016/j.foodchem.2010.04.074

    Article  Google Scholar 

  12. Li, B., Qiao, M., Lu, F.: Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Intl. 28(3), 231–252 (2012). https://doi.org/10.1080/87559129.2011.595023

    Article  Google Scholar 

  13. AOAC: Official Methods of Analysis of AOAC International. AOAC International, Rockville (2005). Accessed 13 Sep 2020

    Google Scholar 

  14. Lin, D., Long, X., Huang, Y., Yang, Y., Wu, Z., Chen, H., Zhang, Q., Wu, D., Qin, W., Tu, Z.: Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT 123, 109059 (2020). https://doi.org/10.1016/j.lwt.2020.109059

    Article  Google Scholar 

  15. Shah, P., & Modi, H. (2015). Comparative Study of DPPH, ABTS and FRAP Assays for Determination of antioxidant activity. Research in Applied Science & Engineering Technology (IJRASET), 3 Issue VI. www.ijraset.com. Accessed 13 Sep 2020

  16. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., Rascón-Chu, A.: Pectin and pectin-based composite materials: beyond food texture. Mol.: J. Synth. Chem. Nat. Prod. Chem. (2018). https://doi.org/10.3390/molecules23040942

    Article  Google Scholar 

  17. Rosset, M., Prudencio, S.H., Beléia, A.D.P.: Viscozyme L action on soy slurry affects carbohydrates and antioxidant properties of silken tofu. Food Sci. Technol. Int. = Ciencia Y Tecnologia De Los Alimentos Internacional 18(6), 531–538 (2012). https://doi.org/10.1177/1082013211433076

    Article  Google Scholar 

  18. Rosset, M., Acquaro Junior, V., Beleia, A.: Protein extraction from defatted soybean flour with viscozyme L pretreatment: protein extraction from defatted soy flour. J. Food Process. Preserv. (2014). https://doi.org/10.1111/jfpp.12030

    Article  Google Scholar 

  19. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  20. Yu, C.-A., Yang, C.-Y.: Bio-ionic liquid pretreatment and ultrasound-promoted enzymatic hydrolysis of black soybean okara. J. Biosci. Bioeng. 127(6), 767–773 (2019). https://doi.org/10.1016/j.jbiosc.2018.12.007

    Article  Google Scholar 

  21. Zheng, H., Hwang, I.-W., Chung, S.-K.: Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes. J. Zhejiang Univ. Sci. B 10(12), 912 (2009). https://doi.org/10.1631/jzus.B0920186

    Article  Google Scholar 

  22. Redondo-Cuenca, A., Villanueva-Suárez, M.J., Rodríguez-Sevilla, M.D., Mateos-Aparicio, I.: Chemical composition and dietary fibre of yellow and green commercial soybeans (glycine max). Food Chem. 101(3), 1216–1222 (2007). https://doi.org/10.1016/j.foodchem.2006.03.025

    Article  Google Scholar 

  23. Nielsen, S.S.: Introduction to food analysis. In: Nielsen, S.S. (ed.) Food Analysis, pp. 3–16. Springer International Publishing, New York (2017). https://doi.org/10.1007/978-3-319-45776-5_1

    Chapter  Google Scholar 

  24. Colletti, A., Attrovio, A., Boffa, L., Mantegna, S., Cravotto, G.: Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules (2020). https://doi.org/10.3390/molecules25092129

    Article  Google Scholar 

  25. Rosset, M., Beléia, A.D.P.: Pre-treatment of soy slurry with viscozyme L and the concentration of sugars and isoflavones and the microstructure of silken tofu. J. Food Nutr. Res. 2(3), 130–135 (2014). https://doi.org/10.12691/jfnr-2-3-7

    Article  Google Scholar 

  26. Thani, N., Mustapa Kamal, S., Taip, F., Sulaiman, A., Omar, R.: Effect of enzyme concentrations on total reducing sugar from leftover croissants and doughnuts via enzymatic hydrolysis. Food Res. 3, 313–316 (2019). https://doi.org/10.26656/fr.2017.3(4).140

    Article  Google Scholar 

  27. Dai, F.-J., Chau, C.-F.: Classification and regulatory perspectives of dietary fiber. J. Food Drug Anal. 25(1), 37–42 (2017). https://doi.org/10.1016/j.jfda.2016.09.006

    Article  Google Scholar 

  28. Chen, D., Chia, J.Y., Liu, S.-Q.: Impact of addition of aromatic amino acids on non-volatile and volatile compounds in lychee wine fermented with Saccharomyces cerevisiae MERIT.ferm. Int. J. Food Microbiol. 170, 12–20 (2014). https://doi.org/10.1016/j.ijfoodmicro.2013.10.025

    Article  Google Scholar 

  29. Lindqvist, D.N., Pedersen, H.Æ., Rasmussen, L.H.: A novel technique for determination of the fructose, glucose and sucrose distribution in nectar from orchids by HPLC-ELSD. J. Chromatogr. B 1081–1082, 126–130 (2018). https://doi.org/10.1016/j.jchromb.2018.02.019

    Article  Google Scholar 

  30. Li, B., Lu, F., Nan, H., Liu, Y.: Isolation and structural characterisation of okara polysaccharides. Molecules 17(1), 753–761 (2012). https://doi.org/10.3390/molecules17010753

    Article  Google Scholar 

  31. Vong, W.C., Au Yang, K.L.C., Liu, S.-Q.: Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Int. J. Food Microbiol. 235, 1–9 (2016). https://doi.org/10.1016/j.ijfoodmicro.2016.06.039

    Article  Google Scholar 

  32. Wu, J., Wu, Y., Yang, C., Wang, Z.: Enzymatic preparation and characterization of soybean oligosaccharides from okara. Procedia Eng. 37, 186–191 (2012). https://doi.org/10.1016/j.proeng.2012.04.224

    Article  Google Scholar 

  33. Zhang, Q., Tong, X., Sui, X., Wang, Z., Qi, B., Li, Y., Jiang, L.: Antioxidant activity and protective effects of alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial caco-2 cells. Food Res. Int. 111, 256–264 (2018). https://doi.org/10.1016/j.foodres.2018.05.046

    Article  Google Scholar 

  34. Willats, W.G., Knox, J.P., Mikkelsen, J.D.: Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17(3), 97–104 (2006). https://doi.org/10.1016/j.tifs.2005.10.008

    Article  Google Scholar 

  35. Zamindar, N., Bashash, M., Khorshidi, F., Serjouie, A., Shirvani, M.A., Abbasi, H., Sedaghatdoost, A.: Antioxidant efficacy of soybean cake extracts in soy oil protection. J. Food Sci. Technol. 54(7), 2077–2084 (2017). https://doi.org/10.1007/s13197-017-2646-0

    Article  Google Scholar 

  36. Khare, S.K., Jha, K., Gandhi(Soybean P. and U. C.), A.P.: Citric acid production from okara (soy-residue) by solid-state fermentation. Bioresource Technol (United Kingdom) 54(3), 323–325 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The author (Lim Siew Khim) would like to express her great appreciation and gratitude to Kuok Foundation for giving her a Malayan Sugar Manufacturing (MSM) Fellowship Fund, assisted by the panels from School of Industrial technology, Universiti Sains Malaysia.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SKL: Investigation, software, validation, resources, writing—Original draft, data curation, writing- original draft preparation. RA: Conceptualization, methodology, resources. MH: Methodology, validation. MSM: Software, validation. AA: Conceptualization, methodology. JST: Conceptualization, methodology, supervision, writing—review & editing, resources.

Corresponding author

Correspondence to Joo Shun Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.K., Ahmad, R., Mohamed, M.S. et al. Pre-treatment of Soy Okara Using Multi-enzyme Complex on Sugar Extraction and Its Effect on Chemical Composition, Morphological Structure, and Antioxidant Capacity. Waste Biomass Valor 13, 1503–1513 (2022). https://doi.org/10.1007/s12649-021-01602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01602-y

Keywords

Profiles

  1. Joo Shun Tan