Skip to main content
Log in

Influence of Nickel Modified Beta Zeolite in the Production of BTEX During Analytical Pyrolysis of Medium-Density Fiberboard (MDF)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Production of high added value chemicals such as BTEX by means of catalytic fast pyrolysis of MDF residues is a promising and environmentally friendly alternative to fossil fuels, as MDF is abundantly produced worldwide. Generation of toxic compounds during MDF pyrolyses was minimized with pre-treatments with yeasts or hot water resulting in a maximum removal of 87.9% of nitrogen compounds when water was used at 80 °C, for 3 h. Nickel-modified beta zeolites with 3 (Ni3B-H) and 5 wt% of nickel (Ni5B-H) were more efficient for the production of BTEX compounds (Ni3B-H: 39.35% and Ni5B-H: 38.65%) and reduction of polyaromatic hydrocarbons (Ni3B-H: 11.12% and Ni5B-H: 15.93%) when compared to pure beta zeolite. Non-catalytic pyrolysis resulted only in oxygenated compounds. These findings were related to the changes of the crystallographic sites of aluminum and then on acidic sites, as well as to the production of a bifunctional catalyst during reactions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. IBÁ - Indústria Brasileira de Árvores, 2020. Anual report. https://www.iba.org/publicacoes/relatorios. Accessed Dec 2020

  2. Mu, J., Lai, Z.: Pyrolysis characteristics of wood-based panels and its products. In: Pyrolysis, pp. 52–70 (2017). https://doi.org/10.5772/67506

  3. Hassan, S.S., Williams, G.A., Jaiswal, A.K.: Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2018.04.099

    Article  Google Scholar 

  4. Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sahu, J.N.: Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.01.048

    Article  Google Scholar 

  5. Miao, L., Yang, G., Tao, T., Peng, Y.: Recent advances in nitrogen removal from landfill leachate using biological treatments: a review. J. Environ. Manage. (2019). https://doi.org/10.1016/j.jenvman.2019.01.057

    Article  Google Scholar 

  6. Toyama, T., Hanaoka, T., Tanaka, Y., Morikawa, M., Mori, K.: Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2017.11.054

    Article  Google Scholar 

  7. Grigsby, W.J., Carpenter, J.E.P., Sargent, R.: Investigating the extent of urea formaldehyde resin cure in medium density fiberboard: resin extractability and fiber effects. J. Wood Chem. Technol. (2014). https://doi.org/10.1080/02773813.2013.861850

    Article  Google Scholar 

  8. Chen, D., Mei, J., Li, H., Li, Y., Lu, M., Ma, T., Ma, Z.: Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2016.12.088

    Article  Google Scholar 

  9. Chen, D., Cen, K., Jing, X., Gao, J., Li, C., Ma, Z.: An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.02.120

    Article  Google Scholar 

  10. Mayer, F.M., Teixeira, C.M., Pacheco, J.G.A., Souza, C.T., Bauer, D.V., Caramão, E.B., Espíndola, J.S., Trierweiler, J.O., Perez-Lopez, O.W., Zini, C.A.: Characterization of analytical fast pyrolysis vapors of medium-density fiberboard (MDF) using metal-modified HZSM-5. J. Anal. Appl. Pyrolysis (2018). https://doi.org/10.1016/j.jaap.2018.10.019

    Article  Google Scholar 

  11. Kabir, G., Hameed, B.H.: Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2016.12.001

    Article  Google Scholar 

  12. Rahman, M.M., Liu, R., Cai, J.: Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil: a review. Fuel Process. Technol. (2018). https://doi.org/10.1016/j.fuproc.2018.08.002

    Article  Google Scholar 

  13. Huang, M., Ma, Z., Zhou, B., Yang, Y., Chen, D.: Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites. Bioresour. Technol. (2020). https://doi.org/10.1016/j.biortech.2020.122754

    Article  Google Scholar 

  14. Huang, M., Xu, J., Ma, Z., Yang, Y., Zhou, B., Wu, C.: Bio-BTX production from the shape selective catalytic fast pyrolysis of lignin using different zeolite catalysts: relevance between the chemical structure and the yield of bio-BTX. Fuel Process. Technol. (2021). https://doi.org/10.1016/j.fuproc.2021.106792

    Article  Google Scholar 

  15. Liu, R., Sarker, M., Rahman, M., Li, C., Chai, M., Cotillon, R., Scott, N.R.: Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production: a review. Prog. Energy Combust. Sci. (2020). https://doi.org/10.1016/j.pecs.2020.100852

    Article  Google Scholar 

  16. Mihalcik, D.J., Mullen, C.A., Boateng, A.A.: Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis (2011). https://doi.org/10.1016/j.jaap.2011.06.0011

    Article  Google Scholar 

  17. Namchot, W., Jitkarnka, S.: Impacts of nickel supported on different zeolites on waste tire derived oil and formation of some petrochemicals. J. Anal. Appl. Pyrolysis (2016). https://doi.org/10.1016/j.jaap.2016.01.001

    Article  Google Scholar 

  18. Yu, Y., Li, X., Su, L., Zhang, Y., Wang, Y., Zhang, H.: The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl. Catal. A Gen. (2012). https://doi.org/10.1016/j.apcata.2012.09.012

    Article  Google Scholar 

  19. Varjani, S.J., Gnansounou, E., Pandey, A.: Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere (2017). https://doi.org/10.1016/j.chemosphere.2017.09.005

    Article  Google Scholar 

  20. Lee, S., Lee, Y., Kim, J., Jeong, S.: Tactical control of Ni-loading over W-supported beta zeolite catalyst for selective ring opening of 1-methylnaphthalene. J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2018.05.042

    Article  Google Scholar 

  21. Choi, Y., Lee, J., Shin, J., Lee, S., Kim, D., Lee, J.K.: Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons. Appl. Catal. A Gen. (2015). https://doi.org/10.1016/j.apcata.2014.12.001

    Article  Google Scholar 

  22. Escola, J.M., Aguado, J., Serrano, D.P., Briones, L., Díaz De Tuesta, J.L., Calvo, R., Fernandez, E.: Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuels (2012). https://doi.org/10.1021/ef300938r

    Article  Google Scholar 

  23. Fonseca, J.S.L., Júnior, A.C.F., Grau, J.M., Rangel, M.C.: Ethylbenzene production over platinum catalysts supported on modified KY zeolites. Appl. Catal. A Gen. (2010). https://doi.org/10.1016/j.apcata.2010.07.056

    Article  Google Scholar 

  24. Galadima, A., Muraza, O.: In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers. Manag. (2015). https://doi.org/10.1016/j.enconman.2015.07.078

    Article  Google Scholar 

  25. van Rij, N.J.W.K.: The yeasts a taxonomic study. In: Elsevie (ed.), third edit, Amsterdam, p. 1082 (1984)

  26. Yarrow, D.: Methods for the isolation, maintenance and identification of yeasts. In: C.P.K. and J.W. Fell (eds.), pp. 77–100 (1998)

  27. Vaudry, F., Di Renzo, F., Espiau, P., Fajula, F.: Aluminum-rich zeolite beta. Zeolites 19, 253 (1997). https://doi.org/10.1016/S0144-2449(97)00083-3

    Article  Google Scholar 

  28. Bhat, R.N., Kumar, R.: Synthesis of zeolite beta using silica gel as a source of SiO2. J. Chem. Technol. Biotechnol. 48, 453 (1990). https://doi.org/10.1002/jctb.280480407

    Article  Google Scholar 

  29. Nuffield, E.W.: X-Ray Diffraction Methods. EUA, New York (1986)

    Google Scholar 

  30. Dhyani, V., Bhaskar, T.: A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy. (2018). https://doi.org/10.1016/j.renene.2017.04.035

    Article  Google Scholar 

  31. Pereira, A.L.C., González-Carbalho, J.M., Pérez-Afonso, F.J., Rojas, S., Fierro, J.L.G., Rangel, M.C.: Effect of the mesostructuration of the beta zeolite support on the properties of cobalt catalysts for Fischer–Tropsch synthesis. Top Catal. (2011). https://doi.org/10.1007/s11244-011-9637-6

    Article  Google Scholar 

  32. Grecco, S.T.F., Rangel, M.C.: Hierarchically structured zeolites. Quim. Nova (2013). https://doi.org/10.1590/S0100-40422013000100023

    Article  Google Scholar 

  33. Dirken, P.J., Kentgens, A.P.M., Nachtegaal, G.H., Van Der Eerden, A.M.J., Jansen, J.B.H.: Solid-state MAS NMR study of pentameric aluminosilicate groups with 1800 intertetrahedral AI-Q-Si angles in zunyite and harkerite. Am. Miner. 80, 39–45 (1995)

    Article  Google Scholar 

  34. Kadgaonkar, M.D., Kasture, M.W., Bhange, D.S., Joshi, P.N., Ramaswamy, V., Kumar, R.: NCL-7, a novel all silica analog of polymorph B rich member of BEA family: synthesis and characterization. Microporous Mesoporous Mater. (2007). https://doi.org/10.1016/j.micromeso.2006.10.033

    Article  Google Scholar 

  35. Abraham, A., Lee, S., Shin, C., Hong, S.B., Prins, R., Van Bokhoven, J.A.: Influence of framework silicon to aluminium ratio on aluminium coordination and distribution in zeolite beta investigated by 27Al MAS and 27Al MQ MAS NMR. Phys. Chem. Chem. Phys. (2004). https://doi.org/10.1039/B401235F

    Article  Google Scholar 

  36. Zaykovskaya, A.O., Kumar, N., Kholkina, E.A., Li-zhulanov, N.S., Aho, A., Peltonen, J., Peurla, M., Heinmaa, I., Yu, D.: Synthesis and physico-chemical characterization of Beta zeolite catalysts: evaluation of catalytic properties in Prins cyclization of (─)−isopulegol. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110236

    Article  Google Scholar 

  37. Kunkeler, P.J., Zuurdeeg, B.J., Van Der Waal, J.C., Van Bokhoven, J.A.: Zeolite beta: the relationship between calcination procedure, aluminum configuration, and Lewis acidity. J. Catal. (1998). https://doi.org/10.1006/jcat.1998.2273

    Article  Google Scholar 

  38. Wouters, B.H., Chen, T., Grobet, P.J.: Reversible Tetrahedral - Octahedral framework aluminum transformation in zeolite Y. J. Am. Chem. Soc. (1998). https://doi.org/10.1021/ja982082l

    Article  Google Scholar 

  39. Bourgeat-lami, E., Massiani, P., Di Renzo, F., Espiau, P., Fajula, F.: Study of the state of aluminium in zeolite-beta. Appl. Catal. (1991). https://doi.org/10.1016/0166-9834(91)85034-S

    Article  Google Scholar 

  40. Van Bokhoven, J.A., Koningsberger, D.C., Kunkeler, P., Van Bekkum, H.: Influence of steam activation on pore structure and acidity of zeolite beta: an Al K Edge XANES study of aluminum coordination. J. Catal. (2002). https://doi.org/10.1006/jcat.2002.3777

    Article  Google Scholar 

  41. Korányi, T.I., Nagy, J.B.: Distribution of aluminum in different periodical building units of MOR and BEA zeolites. J. Phys. Chem. B (2005). https://doi.org/10.1021/jp051793k

    Article  Google Scholar 

  42. Camblor, M.A., Corma, A., Valencia, S.: Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta. J. Mater. Chem. (1998). https://doi.org/10.1039/A804457K

    Article  Google Scholar 

  43. Freude, H.-J.B.D.: Investigation of 27Al-NMR chemical shifts in zeolites of the faujasite type. Cryst. Res. Technol. (1981). https://doi.org/10.1002/crat.19810160322

    Article  Google Scholar 

  44. Stelzer, J., Paulus, M., Hunger, M., Weitkamp, J.: Hydrophobic properties of all-silica zeolite beta. Microporous Mesoporous Mater. (1998). https://doi.org/10.1016/S1387-1811(98)00071-7

    Article  Google Scholar 

  45. Pérez-Pariente, J., Sanz, J., Fornés, V., Corma, A.: 29Si and 27Al MAS NMR study of zeolite beta with different Si/AI ratios. J. Catal. (1990). https://doi.org/10.1016/0021-9517(90)90116-2

    Article  Google Scholar 

  46. Yue, Y., Guo, X., Liu, T., Liu, H., Wang, T., Yuan, P., Zhu, H., Bai, Z., Bao, X.: Template free synthesis of hierarchical porous zeolite beta with natural kaolin clay as alumina source. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2019.109772

    Article  Google Scholar 

  47. Hernando, H., Moreno, I., Fermoso, J., Ochoa-hernández, C., Pizarro, P., Coronado, J.M., Serrano, D.P.: Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and beta zeolites modified with Mg and Zn oxides. Biomass Convers. Biorefinery (2017). https://doi.org/10.1007/s13399-017-0266-6

    Article  Google Scholar 

  48. Grecco, S.T.F., Urquieta-González, E.A., Reyes, P., Oportus, M., Rangel, M.C.: Influence of temperature and time of seed aging on the properties of beta zeolite/MCM-41 materials. J. Braz. Chem. Soc. (2014). https://doi.org/10.5935/0103-5053.20140271

    Article  Google Scholar 

  49. Serrano, D.P., Vicente, G., Linares, M.: Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J. Catal. (2011). https://doi.org/10.1016/j.jcat.2011.02.007

    Article  Google Scholar 

  50. Benaliouche, F., Boucheffa, Y.: NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag- and Cu-exchanged X zeolites. Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2007.07.006

    Article  Google Scholar 

  51. Srivastava, R., Iwasa, N., Fujita, S., Arai, M.: Dealumination of zeolite beta catalyst under controlled conditions for enhancing its activity in acylation and esterification. Catal. Lett. (2009). https://doi.org/10.1007/s10562-009-9992-0

    Article  Google Scholar 

  52. Iliopoulou, E.F., Stefanidis, S.D., Kalogiannis, K.G., Delimitis, A., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B Environ. 10, 20 (2012). https://doi.org/10.1016/j.apcatb.2012.08.030

    Article  Google Scholar 

  53. Karakoulia, S.A., Heracleous, E., Lappas, A.A.: Mild hydroisomerization of heavy naphtha on mono- and bi-metallic Pt and Ni catalysts supported on beta zeolite. Catal. Today. (2020). https://doi.org/10.1016/j.cattod.2019.04.072

    Article  Google Scholar 

  54. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. (2011). https://doi.org/10.1016/j.apcata.2011.08.046

    Article  Google Scholar 

  55. Chen, H., Cheng, H., Zhou, F., Chen, K., Qiao, K., Lu, X., Ouyang, P.: Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. J. Anal. Appl. Pyrolysis (2018). https://doi.org/10.1016/j.jaap.2018.02.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, Coordenação de Aperfeicoamento de Pessoal de Nivel Superior), for financial support through research projects and scholarships (F. Mayer's DSc CAPES 1511161 and C. Zini's researcher scholarship CNPq 306067/2016-1). The authors thank Renato Bernardi from SENAI for helping with MDF sampling and milling.

Funding

Partial financial support was received from National Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, Coordenação de Aperfeicoamento de Pessoal de Nivel Superior), through research projects and scholarships (F. Mayer's DSc CAPES 1511161 and C. Zini's researcher scholarship CNPq 306067/2016-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo Rangel.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, F.M., de Oliveira, A.P.S., de Oliveira Junior, D.L. et al. Influence of Nickel Modified Beta Zeolite in the Production of BTEX During Analytical Pyrolysis of Medium-Density Fiberboard (MDF). Waste Biomass Valor 13, 1717–1729 (2022). https://doi.org/10.1007/s12649-021-01593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01593-w

Keywords