Abstract
Production of high added value chemicals such as BTEX by means of catalytic fast pyrolysis of MDF residues is a promising and environmentally friendly alternative to fossil fuels, as MDF is abundantly produced worldwide. Generation of toxic compounds during MDF pyrolyses was minimized with pre-treatments with yeasts or hot water resulting in a maximum removal of 87.9% of nitrogen compounds when water was used at 80 °C, for 3 h. Nickel-modified beta zeolites with 3 (Ni3B-H) and 5 wt% of nickel (Ni5B-H) were more efficient for the production of BTEX compounds (Ni3B-H: 39.35% and Ni5B-H: 38.65%) and reduction of polyaromatic hydrocarbons (Ni3B-H: 11.12% and Ni5B-H: 15.93%) when compared to pure beta zeolite. Non-catalytic pyrolysis resulted only in oxygenated compounds. These findings were related to the changes of the crystallographic sites of aluminum and then on acidic sites, as well as to the production of a bifunctional catalyst during reactions.
Graphic Abstract






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
All data generated or analyzed during this study are included in this published article [and its supplementary information files].
References
IBÁ - Indústria Brasileira de Árvores, 2020. Anual report. https://www.iba.org/publicacoes/relatorios. Accessed Dec 2020
Mu, J., Lai, Z.: Pyrolysis characteristics of wood-based panels and its products. In: Pyrolysis, pp. 52–70 (2017). https://doi.org/10.5772/67506
Hassan, S.S., Williams, G.A., Jaiswal, A.K.: Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2018.04.099
Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sahu, J.N.: Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.01.048
Miao, L., Yang, G., Tao, T., Peng, Y.: Recent advances in nitrogen removal from landfill leachate using biological treatments: a review. J. Environ. Manage. (2019). https://doi.org/10.1016/j.jenvman.2019.01.057
Toyama, T., Hanaoka, T., Tanaka, Y., Morikawa, M., Mori, K.: Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2017.11.054
Grigsby, W.J., Carpenter, J.E.P., Sargent, R.: Investigating the extent of urea formaldehyde resin cure in medium density fiberboard: resin extractability and fiber effects. J. Wood Chem. Technol. (2014). https://doi.org/10.1080/02773813.2013.861850
Chen, D., Mei, J., Li, H., Li, Y., Lu, M., Ma, T., Ma, Z.: Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2016.12.088
Chen, D., Cen, K., Jing, X., Gao, J., Li, C., Ma, Z.: An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.02.120
Mayer, F.M., Teixeira, C.M., Pacheco, J.G.A., Souza, C.T., Bauer, D.V., Caramão, E.B., Espíndola, J.S., Trierweiler, J.O., Perez-Lopez, O.W., Zini, C.A.: Characterization of analytical fast pyrolysis vapors of medium-density fiberboard (MDF) using metal-modified HZSM-5. J. Anal. Appl. Pyrolysis (2018). https://doi.org/10.1016/j.jaap.2018.10.019
Kabir, G., Hameed, B.H.: Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2016.12.001
Rahman, M.M., Liu, R., Cai, J.: Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil: a review. Fuel Process. Technol. (2018). https://doi.org/10.1016/j.fuproc.2018.08.002
Huang, M., Ma, Z., Zhou, B., Yang, Y., Chen, D.: Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites. Bioresour. Technol. (2020). https://doi.org/10.1016/j.biortech.2020.122754
Huang, M., Xu, J., Ma, Z., Yang, Y., Zhou, B., Wu, C.: Bio-BTX production from the shape selective catalytic fast pyrolysis of lignin using different zeolite catalysts: relevance between the chemical structure and the yield of bio-BTX. Fuel Process. Technol. (2021). https://doi.org/10.1016/j.fuproc.2021.106792
Liu, R., Sarker, M., Rahman, M., Li, C., Chai, M., Cotillon, R., Scott, N.R.: Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production: a review. Prog. Energy Combust. Sci. (2020). https://doi.org/10.1016/j.pecs.2020.100852
Mihalcik, D.J., Mullen, C.A., Boateng, A.A.: Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis (2011). https://doi.org/10.1016/j.jaap.2011.06.0011
Namchot, W., Jitkarnka, S.: Impacts of nickel supported on different zeolites on waste tire derived oil and formation of some petrochemicals. J. Anal. Appl. Pyrolysis (2016). https://doi.org/10.1016/j.jaap.2016.01.001
Yu, Y., Li, X., Su, L., Zhang, Y., Wang, Y., Zhang, H.: The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl. Catal. A Gen. (2012). https://doi.org/10.1016/j.apcata.2012.09.012
Varjani, S.J., Gnansounou, E., Pandey, A.: Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere (2017). https://doi.org/10.1016/j.chemosphere.2017.09.005
Lee, S., Lee, Y., Kim, J., Jeong, S.: Tactical control of Ni-loading over W-supported beta zeolite catalyst for selective ring opening of 1-methylnaphthalene. J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2018.05.042
Choi, Y., Lee, J., Shin, J., Lee, S., Kim, D., Lee, J.K.: Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons. Appl. Catal. A Gen. (2015). https://doi.org/10.1016/j.apcata.2014.12.001
Escola, J.M., Aguado, J., Serrano, D.P., Briones, L., Díaz De Tuesta, J.L., Calvo, R., Fernandez, E.: Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuels (2012). https://doi.org/10.1021/ef300938r
Fonseca, J.S.L., Júnior, A.C.F., Grau, J.M., Rangel, M.C.: Ethylbenzene production over platinum catalysts supported on modified KY zeolites. Appl. Catal. A Gen. (2010). https://doi.org/10.1016/j.apcata.2010.07.056
Galadima, A., Muraza, O.: In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers. Manag. (2015). https://doi.org/10.1016/j.enconman.2015.07.078
van Rij, N.J.W.K.: The yeasts a taxonomic study. In: Elsevie (ed.), third edit, Amsterdam, p. 1082 (1984)
Yarrow, D.: Methods for the isolation, maintenance and identification of yeasts. In: C.P.K. and J.W. Fell (eds.), pp. 77–100 (1998)
Vaudry, F., Di Renzo, F., Espiau, P., Fajula, F.: Aluminum-rich zeolite beta. Zeolites 19, 253 (1997). https://doi.org/10.1016/S0144-2449(97)00083-3
Bhat, R.N., Kumar, R.: Synthesis of zeolite beta using silica gel as a source of SiO2. J. Chem. Technol. Biotechnol. 48, 453 (1990). https://doi.org/10.1002/jctb.280480407
Nuffield, E.W.: X-Ray Diffraction Methods. EUA, New York (1986)
Dhyani, V., Bhaskar, T.: A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy. (2018). https://doi.org/10.1016/j.renene.2017.04.035
Pereira, A.L.C., González-Carbalho, J.M., Pérez-Afonso, F.J., Rojas, S., Fierro, J.L.G., Rangel, M.C.: Effect of the mesostructuration of the beta zeolite support on the properties of cobalt catalysts for Fischer–Tropsch synthesis. Top Catal. (2011). https://doi.org/10.1007/s11244-011-9637-6
Grecco, S.T.F., Rangel, M.C.: Hierarchically structured zeolites. Quim. Nova (2013). https://doi.org/10.1590/S0100-40422013000100023
Dirken, P.J., Kentgens, A.P.M., Nachtegaal, G.H., Van Der Eerden, A.M.J., Jansen, J.B.H.: Solid-state MAS NMR study of pentameric aluminosilicate groups with 1800 intertetrahedral AI-Q-Si angles in zunyite and harkerite. Am. Miner. 80, 39–45 (1995)
Kadgaonkar, M.D., Kasture, M.W., Bhange, D.S., Joshi, P.N., Ramaswamy, V., Kumar, R.: NCL-7, a novel all silica analog of polymorph B rich member of BEA family: synthesis and characterization. Microporous Mesoporous Mater. (2007). https://doi.org/10.1016/j.micromeso.2006.10.033
Abraham, A., Lee, S., Shin, C., Hong, S.B., Prins, R., Van Bokhoven, J.A.: Influence of framework silicon to aluminium ratio on aluminium coordination and distribution in zeolite beta investigated by 27Al MAS and 27Al MQ MAS NMR. Phys. Chem. Chem. Phys. (2004). https://doi.org/10.1039/B401235F
Zaykovskaya, A.O., Kumar, N., Kholkina, E.A., Li-zhulanov, N.S., Aho, A., Peltonen, J., Peurla, M., Heinmaa, I., Yu, D.: Synthesis and physico-chemical characterization of Beta zeolite catalysts: evaluation of catalytic properties in Prins cyclization of (─)−isopulegol. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110236
Kunkeler, P.J., Zuurdeeg, B.J., Van Der Waal, J.C., Van Bokhoven, J.A.: Zeolite beta: the relationship between calcination procedure, aluminum configuration, and Lewis acidity. J. Catal. (1998). https://doi.org/10.1006/jcat.1998.2273
Wouters, B.H., Chen, T., Grobet, P.J.: Reversible Tetrahedral - Octahedral framework aluminum transformation in zeolite Y. J. Am. Chem. Soc. (1998). https://doi.org/10.1021/ja982082l
Bourgeat-lami, E., Massiani, P., Di Renzo, F., Espiau, P., Fajula, F.: Study of the state of aluminium in zeolite-beta. Appl. Catal. (1991). https://doi.org/10.1016/0166-9834(91)85034-S
Van Bokhoven, J.A., Koningsberger, D.C., Kunkeler, P., Van Bekkum, H.: Influence of steam activation on pore structure and acidity of zeolite beta: an Al K Edge XANES study of aluminum coordination. J. Catal. (2002). https://doi.org/10.1006/jcat.2002.3777
Korányi, T.I., Nagy, J.B.: Distribution of aluminum in different periodical building units of MOR and BEA zeolites. J. Phys. Chem. B (2005). https://doi.org/10.1021/jp051793k
Camblor, M.A., Corma, A., Valencia, S.: Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta. J. Mater. Chem. (1998). https://doi.org/10.1039/A804457K
Freude, H.-J.B.D.: Investigation of 27Al-NMR chemical shifts in zeolites of the faujasite type. Cryst. Res. Technol. (1981). https://doi.org/10.1002/crat.19810160322
Stelzer, J., Paulus, M., Hunger, M., Weitkamp, J.: Hydrophobic properties of all-silica zeolite beta. Microporous Mesoporous Mater. (1998). https://doi.org/10.1016/S1387-1811(98)00071-7
Pérez-Pariente, J., Sanz, J., Fornés, V., Corma, A.: 29Si and 27Al MAS NMR study of zeolite beta with different Si/AI ratios. J. Catal. (1990). https://doi.org/10.1016/0021-9517(90)90116-2
Yue, Y., Guo, X., Liu, T., Liu, H., Wang, T., Yuan, P., Zhu, H., Bai, Z., Bao, X.: Template free synthesis of hierarchical porous zeolite beta with natural kaolin clay as alumina source. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2019.109772
Hernando, H., Moreno, I., Fermoso, J., Ochoa-hernández, C., Pizarro, P., Coronado, J.M., Serrano, D.P.: Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and beta zeolites modified with Mg and Zn oxides. Biomass Convers. Biorefinery (2017). https://doi.org/10.1007/s13399-017-0266-6
Grecco, S.T.F., Urquieta-González, E.A., Reyes, P., Oportus, M., Rangel, M.C.: Influence of temperature and time of seed aging on the properties of beta zeolite/MCM-41 materials. J. Braz. Chem. Soc. (2014). https://doi.org/10.5935/0103-5053.20140271
Serrano, D.P., Vicente, G., Linares, M.: Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J. Catal. (2011). https://doi.org/10.1016/j.jcat.2011.02.007
Benaliouche, F., Boucheffa, Y.: NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag- and Cu-exchanged X zeolites. Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2007.07.006
Srivastava, R., Iwasa, N., Fujita, S., Arai, M.: Dealumination of zeolite beta catalyst under controlled conditions for enhancing its activity in acylation and esterification. Catal. Lett. (2009). https://doi.org/10.1007/s10562-009-9992-0
Iliopoulou, E.F., Stefanidis, S.D., Kalogiannis, K.G., Delimitis, A., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B Environ. 10, 20 (2012). https://doi.org/10.1016/j.apcatb.2012.08.030
Karakoulia, S.A., Heracleous, E., Lappas, A.A.: Mild hydroisomerization of heavy naphtha on mono- and bi-metallic Pt and Ni catalysts supported on beta zeolite. Catal. Today. (2020). https://doi.org/10.1016/j.cattod.2019.04.072
Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. (2011). https://doi.org/10.1016/j.apcata.2011.08.046
Chen, H., Cheng, H., Zhou, F., Chen, K., Qiao, K., Lu, X., Ouyang, P.: Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. J. Anal. Appl. Pyrolysis (2018). https://doi.org/10.1016/j.jaap.2018.02.009
Acknowledgements
The authors thank the National Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, Coordenação de Aperfeicoamento de Pessoal de Nivel Superior), for financial support through research projects and scholarships (F. Mayer's DSc CAPES 1511161 and C. Zini's researcher scholarship CNPq 306067/2016-1). The authors thank Renato Bernardi from SENAI for helping with MDF sampling and milling.
Funding
Partial financial support was received from National Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, Coordenação de Aperfeicoamento de Pessoal de Nivel Superior), through research projects and scholarships (F. Mayer's DSc CAPES 1511161 and C. Zini's researcher scholarship CNPq 306067/2016-1).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mayer, F.M., de Oliveira, A.P.S., de Oliveira Junior, D.L. et al. Influence of Nickel Modified Beta Zeolite in the Production of BTEX During Analytical Pyrolysis of Medium-Density Fiberboard (MDF). Waste Biomass Valor 13, 1717–1729 (2022). https://doi.org/10.1007/s12649-021-01593-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-021-01593-w


