Skip to main content
Log in

Effect of Degree of Hydrolysis on Biochemical Properties and Biological Activities (Antioxidant and Antihypertensive) of Protein Hydrolysates from Pacific Thread Herring (Ophistonema libertate) Stickwater

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

High amounts of rich-protein liquid wastes are produced during seafood processing. The effluent called stickwater resulting from the processing of Pacific thread herring (Ophistonema libertate) into fishmeal, was evaluated as protein source to produce bioactive protein hydrolysates by using Alcalase as enzyme source.

Methods

The effect of degree of hydrolysis on biochemical properties (proximate analysis, molecular weight, and amino acid composition) and antioxidant and antihypertensive activities of stickwater protein hydrolysates obtained with Alcalase was determined.

Results

Degree of hydrolysis (DH) of samples (5%, 10%, 15% and 20%) influences its biochemical and bioactive properties. The maximum ABTS and FRAP activity values (P < 0.05) were exhibited by hydrolysates at 15% DH (EC50 = 2.8 mg/mL and TEAC = 1.16 ± 0.03 mM TE/mg, respectively). Whereas the highest DPPH scavenging activity (P < 0.05) was found for hydrolysates at 5 % and 10 % of DH (EC50 = 34.7 mg/mL and 37 mg/mL respectively). Furthermore, enzymatic hydrolysis enhanced angiotensin converting enzyme (ACE)-inhibitory activity, being those at 5 and 10% of DH, which exhibited lower IC50 values (P < 0.05) compared to non-hydrolyzed stickwater. Peptide distribution of protein hydrolysates at < 1.35 kDa was in a range of 47–62% of total peptides and the presence of amino acids related to antioxidant activity such as His, Lys, Met, Tau, Tyr and Trp was detected in stickwater and protein hydrolysates.

Conclusions

The production of protein hydrolysates from Pacific thread herring stickwater, represents an alternative to obtain added-value products with potential antioxidant and antihypertensive activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. FAO, The State of World Fisheries and Aquaculture: Sustainability in action, in food and agriculture organization of the United Nations. FAO, Rome (2020)

    Google Scholar 

  2. Navarro-Peraza, R.S., Osuna-Ruiz, I., Lugo-Sánchez, M.E., Pacheco-Aguilar, R., Ramírez-Suárez, J.C., Burgos-Hernández, A., Martínez-Montaño, E., Salazar-Leyva, J.A.: Structural and biological properties of protein hydrolysates from seafood by-products: a review focused on fishery effluents. Food Sci. Technol. 40, 1–5 (2020). https://doi.org/10.1590/fst.24719

    Article  Google Scholar 

  3. Bechtel, P.J.: Properties of stickwater from fish processing byproducts. J. Aquat. Food Prod. Technol. 14, 25–38 (2005). https://doi.org/10.1300/J030v14n02_03

    Article  Google Scholar 

  4. Valdez-Hurtado, S., Goycolea-Valencia, F., Márquez-Ríos, E.: Efecto de una centrifugación complementaria en la composición química y reológica del agua de cola. Biotecnia. 20, 95–103 (2018). https://doi.org/10.18633/biotecnia.v20i2.606

    Article  Google Scholar 

  5. Mahdabi, M., Hosseini Shekarabi, S.P.: A comparative study on some functional and antioxidant properties of kilka meat, fishmeal, and stickwater protein hydrolysates. J. Aquat. Food Prod. Technol. 27, 844–858 (2018). https://doi.org/10.1080/10498850.2018.1500503

    Article  Google Scholar 

  6. Pacheco-Aguilar, R., de la Barca, A.M., Castillo-Yañez, F.J., Marquéz-Ríos, E., García-Carreño, F.L., Valdez-Hurtado, S.: Comparación del efecto de dos tratamientos enzimáticos con actividad colagenasa y una centrifugación complementaria en las características fisicoquímicas del agua de cola generada por la industria sardinera. Biotecnia. 20, 58–64 (2018). https://doi.org/10.18633/biotecnia.v20i3.703

    Article  Google Scholar 

  7. Hou, Y., Wu, Z., Dai, Z., Wang, G., Wu, G.: Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 8, 24 (2017). https://doi.org/10.1186/s40104-017-0153-9

    Article  Google Scholar 

  8. Balti, R., Nedjar-Arroume, N., Adje, E.Y., Guillochon, D., Nasri, M.: Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. J. Agric. Food Chem. 58, 3840–3846 (2010). https://doi.org/10.1021/jf904300q

    Article  Google Scholar 

  9. Hsu, K.C.C., M.L.; & Hwang, J.S.: Hydrolysates from tuna cooking juice as an anti-hypertensive agent. J. Food Drug Anal. 15, 169–173 (2007). https://doi.org/10.38212/2224-6614.2424

    Article  Google Scholar 

  10. Vieira, E.F., Ferreira, I.M.: Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing industries. Int. J. Food Prop. 20, 662–673 (2017). https://doi.org/10.1080/10942912.2016.1176036

    Article  Google Scholar 

  11. Felix, M., Romero, A., Rustad, T., Guerrero, A.: Rheological properties and antioxidant activity of protein gels-like systems made from crayfish concentrate and hydrolysates. Food Bioprod. Process. 102, 167–176 (2017). https://doi.org/10.1016/j.fbp.2016.12.014

    Article  Google Scholar 

  12. Zou, Y., Robbens, J., Heyndrickx, M., Debode, J., Raes, K.: Bioprocessing of marine crustaceans side streams into bioactives: a review. J. Chem. Technol. Biotechnol. (2021). https://doi.org/10.1002/jctb.6690

    Article  Google Scholar 

  13. Amado, I.R., Vázquez, J.A., González, M.P., Murado, M.A.: Production of antihypertensive and antioxidant activities by enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from cuttlefish processing wastewaters. Biochem. Eng. J. 76, 43–54 (2013). https://doi.org/10.1016/j.bej.2013.04.009

    Article  Google Scholar 

  14. Sandoval-Gallardo, J.M., Osuna-Ruiz, I., Martínez-Montaño, E., Hernández, C., Hurtado-Oliva, M., Valdez-Ortiz, Á, Rios-Herrera, G.D., Salazar-Leyva, J.A., Ramírez-Pérez, J.S.: Influence of enzymatic hydrolysis conditions on biochemical and antioxidant properties of pacific thread herring (Ophistonema libertate) hydrolysates. CyTA-J. Food. 18, 392–400 (2020). https://doi.org/10.1080/19476337.2020.1767694

    Article  Google Scholar 

  15. Navarrete del Toro, M.A., García-Carreño, F.L.: Evaluation of the progress of protein hydrolysis. Curr. Protoc. Food Anal. Chem. (2003). https://doi.org/10.1002/0471142913.fab0202s10

    Article  Google Scholar 

  16. William, H.: Official methods of analysis of AOAC international, p. 481. AOAC International, Rockville (2000)

    Google Scholar 

  17. Folch, J., Lees, M., Stanley, G.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Article  Google Scholar 

  18. Martínez-Montaño, E., Osuna-Ruíz, I., Benítez-García, I., Osuna, C.O., Pacheco-Aguilar, R., Navarro-Peraza, R.S., Sánchez, M.E.L., Hernández, C., Spanopoulos-Hernández, M., Salazar-Leyva, J.A.: Biochemical and antioxidant properties of recovered solids with pH shift from fishery effluents (sardine stickwater and tuna cooking water). Waste Biomass Valoriz. 12, 1901–1913 (2020). https://doi.org/10.1007/s12649-020-01147-6

    Article  Google Scholar 

  19. Vázquez-Ortiz, F., Caire, G., Higuera-Ciapara, I., Hernández, G.: High performance liquid chromatographic determination of free amino acids in shrimp. J. Liq. Chromatogr. Related Technol. 18, 2059–2068 (1995). https://doi.org/10.1080/10826079508013960

    Article  Google Scholar 

  20. Müller, L., Fröhlich, K., Böhm, V.: Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 129, 139–148 (2011). https://doi.org/10.1016/j.foodchem.2011.04.045

    Article  Google Scholar 

  21. Przygodzka, M., Zielińska, D., Ciesarová, Z., Kukurová, K., Zieliński, H.: Comparison of methods for evaluation of the antioxidant capacity and phenolic compounds in common spices. LWT Food Sci. Technol. 58, 321–326 (2014). https://doi.org/10.1016/j.lwt.2013.09.019

    Article  Google Scholar 

  22. Benzie, I.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  23. Szőllősi, R., Varga, I.S.I.: Total antioxidant power in some species of Labiatae: adaptation of FRAP method. Acta Biol. Szeged. 46, 125–127 (2002)

    Google Scholar 

  24. Miguel, M., Aleixandre, M., Ramos, M., Lopez-Fandino, R.: Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. J. Agric. Food Chem. 54, 726–731 (2006). https://doi.org/10.1021/jf051101p

    Article  Google Scholar 

  25. Motulsky, H., Christopoulos, A.: Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  26. Guérard, F., Dufosse, L., De La Broise, D., Binet, A.: Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B: Enzym. 11, 1051–1059 (2001). https://doi.org/10.1016/S1381-1177(00)00031-X

    Article  Google Scholar 

  27. Ramakrishnan, V., Ghaly, A., Brooks, M., Budge, S.: Extraction of proteins from mackerel fish processing waste using alcalase enzyme. J. Bioproces Biotech. 3, 1–9 (2013). https://doi.org/10.4172/2155-9821.1000130

    Article  Google Scholar 

  28. Amado, I.R., González, M.P., Murado, M.A., Vázquez, J.A.: Shrimp wastewater as a source of astaxanthin and bioactive peptides. J. Chem. Technol. Biotechnol. 91, 793–805 (2016). https://doi.org/10.1002/jctb.4647

    Article  Google Scholar 

  29. Amado, I.R., Vázquez, J.A., González, P., Esteban-Fernández, D., Carrera, M., Piñeiro, C.: Identification of the major ACE-inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate from cuttlefish wastewater. Mar. Drugs. 12, 1390–1405 (2014). https://doi.org/10.3390/md12031390

    Article  Google Scholar 

  30. Li-Chan, E.C.: Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 1, 28–37 (2015). https://doi.org/10.1016/j.cofs.2014.09.005

    Article  Google Scholar 

  31. Chalamaiah, M., Hemalatha, R., Jyothirmayi, T.: Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135, 3020–3038 (2012). https://doi.org/10.1016/j.foodchem.2012.06.100

    Article  Google Scholar 

  32. Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M.-C., Barkia, A., Nasri, M.: Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. J. Proteom. 128, 458–468 (2015). https://doi.org/10.1016/j.jprot.2015.05.007

    Article  Google Scholar 

  33. Ovissipour, M., Kenari, A.A., Motamedzadegan, A., Nazari, R.M.: Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food Bioprocess Technol. 5, 696–705 (2012)

    Article  Google Scholar 

  34. Kousoulaki, K., Olsen, H.J., Albrektsen, S., Langmyhr, E., Mjøs, S.A., Campbell, P., Aksnes, A.: High growth rates in Atlantic salmon (Salmo salar L.) fed 7.5 % fish meal in the diet. Micro-, ultra-and nano-filtration of stickwater and effects of different fractions and compounds on pellet quality and fish performance. Aquaculture. 338, 134–146 (2012). https://doi.org/10.1016/j.aquaculture.2012.01.017

    Article  Google Scholar 

  35. Wu, D., Zhou, L., Gao, M., Wang, M., Wang, B., He, J., Luo, Q., Ye, Y., Cai, C., Wu, P.: Effects of stickwater hydrolysates on growth performance for yellow catfish (Pelteobagrus fulvidraco). Aquaculture. 488, 161–173 (2018). https://doi.org/10.1016/j.aquaculture.2018.01.031

    Article  Google Scholar 

  36. Ghalamara, S., Silva, S., Brazinha, C., Pintado, M.: Valorization of fish by-products: purification of bioactive peptides from codfish blood and sardine cooking wastewaters by membrane processing. Membranes 10, 44 (2020). https://doi.org/10.3390/membranes10030044

    Article  Google Scholar 

  37. Wu, T.H., Bechtel, P.J.: Screening for low molecular weight compounds in fish meal solubles by hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chem. 130, 739–745 (2012). https://doi.org/10.1016/j.foodchem.2011.05.088

    Article  Google Scholar 

  38. Rosas-Romero, Z.G., Ramirez-Suarez, J.C., Pacheco-Aguilar, R., Lugo-Sánchez, M.E., Carvallo-Ruiz, G., García-Sánchez, G.: Partial characterization of an effluent produced by cooking of jumbo squid (Dosidicus gigas) mantle muscle. Bioresour. Technol. 101, 600–605 (2010). https://doi.org/10.1016/j.biortech.2009.08.074

    Article  Google Scholar 

  39. Jao, C.-L., Ko, W.-C.: 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish. Sci. 68, 430–435 (2002). https://doi.org/10.1046/j.1444-2906.2002.00442.x

    Article  Google Scholar 

  40. Wattanakul, U., Wattanakul, W., Thongprajukaew, K.: Optimal replacement of fish meal protein by stick water in diet of sex-reversed Nile tilapia (Oreochromis niloticus). Animals 9, 521 (2019). https://doi.org/10.3390/ani9080521

    Article  Google Scholar 

  41. Shi, Y., Zhong, L., Ma, X., Liu, Y., Tang, T., Hu, Y.: Effect of replacing fishmeal with stickwater hydrolysate on the growth, serum biochemical indexes, immune indexes, intestinal histology and microbiota of rice field eel (monopterus albus). Aquacult. Rep. 15, 100223 (2019). https://doi.org/10.1016/j.aqrep.2019.100223

    Article  Google Scholar 

  42. Pérez-Santín, E., Calvo, M., López-Caballero, M., Montero, P., Gómez-Guillén, M.: Compositional properties and bioactive potential of waste material from shrimp cooking juice. LWT Food Sci. Technol. 54, 87–94 (2013). https://doi.org/10.1016/j.lwt.2013.05.038

    Article  Google Scholar 

  43. Kasiwut, J., Youravong, W., Sirinupong, N.: Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. J. Food Biochem. 43, e13058 (2019). https://doi.org/10.1111/jfbc.13058

    Article  Google Scholar 

  44. Nwachukwu, I.D., Aluko, R.E.: Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 43, e12761 (2019). https://doi.org/10.1111/jfbc.12761

    Article  Google Scholar 

  45. Liu, R., Xing, L., Fu, Q., Zhou, G., Zhang, W.-g: A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 5, 32 (2016)

    Article  Google Scholar 

  46. Sarmadi, B.H., Ismail, A.: Antioxidative peptides from food proteins: a review. Peptides. 31, 1949–1956 (2010). https://doi.org/10.1016/j.peptides.2010.06.020

    Article  Google Scholar 

  47. Dávalos, A., Miguel, M., Bartolome, B., Lopez-Fandino, R.: Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 67, 1939–1944 (2004). https://doi.org/10.4315/0362-028X-67.9.1939

    Article  Google Scholar 

  48. Schaich, K.M., Tian, X., Xie, J.: Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 14, 111–125 (2015)

    Article  Google Scholar 

  49. Najafian, L., Babji, A.: A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides. 33, 178–185 (2012). https://doi.org/10.1016/j.peptides.2011.11.013

    Article  Google Scholar 

  50. Jo, C., Khan, F.F., Khan, M.I., Iqbal, J.: Marine bioactive peptides: types, structures, and physiological functions. Food Rev. Int. 33, 44–61 (2017). https://doi.org/10.1080/87559129.2015.1137311

    Article  Google Scholar 

  51. Malaypally, S.P., Liceaga, A.M., Kim, K.-H., Ferruzzi, M., San Martin, F., Goforth, R.R.: Influence of molecular weight on intracellular antioxidant activity of invasive silver carp (Hypophthalmichthys molitrix) protein hydrolysates. J. Funct. Foods. 18, 1158–1166 (2015). https://doi.org/10.1016/j.jff.2014.06.011

    Article  Google Scholar 

  52. Hsu, K.-C., Lu, G.-H., Jao, C.-L.: Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Res. Int. 42, 647–652 (2009). https://doi.org/10.1016/j.foodres.2009.02.014

    Article  Google Scholar 

  53. Prior, R.L., Wu, X., Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005). https://doi.org/10.1021/jf0502698

    Article  Google Scholar 

  54. Ambigaipalan, P., Shahidi, F.: Bioactive peptides from shrimp shell processing discards: antioxidant and biological activities. J. Funct. Foods 34, 7–17 (2017). https://doi.org/10.1016/j.jff.2017.04.013

    Article  Google Scholar 

  55. Goodfriend, T.L., Elliott, M.E., Catt, K.J.: Angiotensin receptors and their antagonists. N. Engl. J. Med. 334, 1649–1655 (1996). DOI:https://doi.org/10.1056/NEJM199606203342507

    Article  Google Scholar 

  56. Lee, S.-H., Qian, Z.-J., Kim, S.-K.: A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 118, 96–102 (2010). https://doi.org/10.1016/j.foodchem.2009.04.086

    Article  Google Scholar 

  57. Salampessy, J., Reddy, N., Phillips, M., Kailasapathy, K.: Isolation and characterization of nutraceutically potential ACE-Inhibitory peptides from leatherjacket (Meuchenia sp.) protein hydrolysates. LWT. 80, 430–436 (2017). https://doi.org/10.1016/j.lwt.2017.03.004

    Article  Google Scholar 

  58. Yathisha, U.G., Bhat, I., Karunasagar, I., Mamatha, B.S.: Antihypertensive activity of fish protein hydrolysates and its peptides. Crit. Rev. Food Sci. Nutr. 59, 2363–2374 (2019). https://doi.org/10.1080/10408398.2018.1452182

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Consejo Nacional de Ciencia y Tecnología (CONACYT, México) for financial Grant No. 258128. Rosa María Sarmiento Machado thanks CONACYT for the scholarship granted to support her postgraduate studies. We thank Maz-Industrial SA de CV for their kind donation of fishery effluents. Also, the authors thank María Elena Sánchez Salazar for her editorial work in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Aarón Salazar-Leyva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Montaño, E., Sarmiento-Machado, R.M., Osuna-Ruíz, I. et al. Effect of Degree of Hydrolysis on Biochemical Properties and Biological Activities (Antioxidant and Antihypertensive) of Protein Hydrolysates from Pacific Thread Herring (Ophistonema libertate) Stickwater. Waste Biomass Valor 13, 1015–1027 (2022). https://doi.org/10.1007/s12649-021-01590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01590-z

Keywords

Navigation