Skip to main content
Log in

Investigation of a Carbon-Based Sorbent Prepared from FeSO4-Flocculated Sludge for Elemental Mercury Removal from Syngas

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A novel carbon-based sorbent was prepared from FeSO4-flocculated sludge by one-step pyrolysis. The characterization results indicated that multiple Fe2O3 and sulfur species (S22− and polysulfide) existed over this sludge-derived sorbent. Its performance on Hg0 removal from syngas was evaluated. The sorbent from the sludge pyrolyzed at 710 ℃ could achieve around 86 % Hg0 removal efficiency at 150 ℃ under simulated syngas (400 ppm H2S, 10 ppm HCl, 20 vol% H2, 30 vol% CO, 8 vol% H2O and N2). H2S and HCl exhibited a promoting effect on Hg0 removal, whereas CO, H2 and H2O inhibited Hg0 removal. The analysis of adsorption kinetics manifested that Hg0 adsorption over the sorbent was better described by pseudo-second-order kinetic model, implying that it was a chemisorption process. The Hg0 removal under N2 condition was due to the reaction between absorbed Hg0 and Fe3+–O or S22−/polysulfide over the sorbent surface. In the presence of H2S, multiple sulfur species was produced by the reaction of adsorbed H2S with Fe3+–O. The increased sulfur species (S22− and polysulfide) greatly promoted the formation of HgS. The sorbent has good prospect in engineering applications because of its good Hg0 removal performance, low cost and facile preparation process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park, C., Kim, B.: The optimization of low-rank coal grinding for transport coal gasification by robust design. Fuel 95, 282–286 (2012)

    Article  Google Scholar 

  2. Shen, F.H., Liu, J., Zhang, Z., Dong, Y.C., Gu, C.K.: Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process. Technol. 171, 258–264 (2018)

    Article  Google Scholar 

  3. Presto, A.A., Granite, E.J.: Survey of catalysts for oxidation of mercury in flue gas. Environ. Sci. Technol. 40, 5601–5609 (2006)

    Article  Google Scholar 

  4. Scala, F., Clack, H.: Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator. J. Hazard. Mater. 152(2), 616–623 (2008)

    Article  Google Scholar 

  5. Streets, D.J., Zhang, Q., Wu, Y.: Projections of global mercury emissions in 2050. Environ. Sci. Technol. 43, 2983–2988 (2009)

    Article  Google Scholar 

  6. Gonzalez-Raymat, H., Liu, G.L., Liriano, C., Li, Y.B., Yin, Y.G., Shi, J.B., Jiang, G.B., Cai, Y.: Elemental mercury: its unique properties affect its behavior and fate in the environment. Environ. Pollut. 229, 69–86 (2017)

    Article  Google Scholar 

  7. Chalkidis, A., Jampaiah, D., Hartley, P.G., Sabri, Y.M., Bhargava, S.K.: Regenerable α-MnO2 nanotubes for elemental mercury removal from natural gas. Fuel Process. Technol. 193, 317–327 (2019)

    Article  Google Scholar 

  8. Wilcox, J., Rupp, E., Ying, S.C., Lim, D.H., Negreira, A.S., Kirchofer, A., Feng, F., Lee, K.: Mercury adsorption and oxidation in coal combustion and gasification processes. Int. J. Coal Geol 90–91, 4–20 (2012)

    Article  Google Scholar 

  9. Yang, Y.J., Liu, J., Wang, Z.: Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Prog. Energy Combust. Sci. 79, 100844 (2020)

    Article  Google Scholar 

  10. Wilhelm, S.M.: Risk analysis for operation of aluminum heat exchangers contaminated by mercury. Process. Saf. Prog. 28, 259–266 (2009)

    Article  Google Scholar 

  11. Shen, H.T., Wang, H., Shen, C., Wu, J.F., Zhu, Y.M., Shi, W., Zhang, X.D., Ying, Z.F.: Effect of atmosphere of SO2 coexisted with oxidizing gas on mercury removal under oxy-fuel condition. Chemosphere 259, 127525 (2020)

    Article  Google Scholar 

  12. Hou, W.H., Zhou, J.S., Yu, C.J., You, S.L., Gao, X., Luo, Z.Y.: Pd/Al2O3 sorbents for elemental mercury capture at high temperatures in syngas. Ind. Eng. Chem. Res. 53(23), 9909–9914 (2014)

    Article  Google Scholar 

  13. Yue, C.X., Wang, J.C., Han, L.N., Chang, L.P., Hu, Y.F., Wang, H.: Effects of pretreatment of Pd/AC sorbents on the removal of Hg0 from coal derived fuel gas. Fuel Process. Technol. 135, 125–132 (2015)

    Article  Google Scholar 

  14. Han, L., He, X.X., Yue, C.X., Hu, Y.F., Li, L.N., Chang, L.P., Wang, H., Wang, J.C.: Fe doping Pd/AC sorbent efficiently improving the Hg0 removal from the coal-derived fuel gas. Fuel 182, 64–72 (2016)

    Article  Google Scholar 

  15. Huo, Q.H., Yue, C.X., Wang, Y.H., Han, L.N., Wang, J.C., Chen, S., Bao, W.R., Chang, L.P., Xie, K.C.: Effect of impregnation sequence of Pd/Ce/γ-Al2O3 sorbents on Hg0 removal from coal derived fuel gas. Chemosphere 249, 126164 (2020)

    Article  Google Scholar 

  16. Li, H.L., Zhu, L., Wang, J., Li, L.Q., Shih, K.: Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environ. Sci. Technol. 50(17), 9551–9557 (2016)

    Article  Google Scholar 

  17. Zhao, H.T., Yang, G., Gao, X., Pang, C.H., Kingman, S.W., Wu, T.: Hg0: capture over CoMoS/γ-Al2O3 with MoS2 nanosheets at low temperatures. Environ. Sci. Technol. 50(2), 1056–1064 (2016)

    Article  Google Scholar 

  18. Liu, W., Xu, H.M., Liao, Y., Quan, Z.W., Li, S.C., Zhao, S.J., Qu, Z., Yan, N.Q.: Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel 235, 847–854 (2019)

    Article  Google Scholar 

  19. Ralston, N.: Nano-selenium captures mercury. Nat. Nanotechnol. 3(11), 648 (2008)

    Article  Google Scholar 

  20. Yang, Z.Q., Li, H.L., Yang, J.P., Feng, S.H., Liu, X., Zhao, J.X., Qu, W.Q., Li, P., Feng, Y., Lee, P.H., Shih, K.: Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury. Adv. Funct. Mater. 29, 1807191 (2019)

    Article  Google Scholar 

  21. Ji, L., Sreekanth, P.M., Smirniotis, P.G., Thiel, S.W., Pinto, N.G.: Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy Fuels 22, 2299–2306 (2008)

    Article  Google Scholar 

  22. Scala, F., Cimino, S.: Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: the effect of gas composition. Chem. Eng. J. 278, 134–139 (2015)

    Article  Google Scholar 

  23. Jampaiah, D., Ippolito, S.J., Sabri, Y.M., Tardio, J., Selvakannan, P.R., Nafady, A., Reddy, B.M., Bhargava, S.K.: Ceria-zirconia modified MnOX catalysts for gaseous elemental mercury oxidation and adsorption. Catal. Sci. Technol. 6, 1792–1803 (2016)

    Article  Google Scholar 

  24. Wang, Z., Liu, J., Yang, Y.J., Yu, Y.N., Yan, X.C., Zhang, Z.: AMn2O4 (A = Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. J. Hazard. Mater. 388, 121738 (2020)

    Article  Google Scholar 

  25. Skodras, G., Diamantopoulou, I., Zabaniotou, A., Stavropoulos, G., Sakellaropoulos, G.P.: Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process. Technol. 88, 749–758 (2007)

    Article  Google Scholar 

  26. Li, G.L., Wu, Q.R., Wang, S.X., Li, Z.J., Liang, H.Y., Tang, Y., Zhao, M.J., Chen, L., Liu, K.Y., Wang, F.Y.: The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. Chem. Eng. J. 326, 561–569 (2017)

    Article  Google Scholar 

  27. Reddy, K.S.K., Shoaibi, A.A., Srinivasakannan, C.: Mercury removal using metal sulfide porous carbon complex. Process. Saf. Environ. 114, 153–158 (2018)

    Article  Google Scholar 

  28. Yang, S., Wang, D.L., Liu, H., Liu, C., Xie, X.F., Xu, Z.F., Liu, Z.L.: Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: copper polysulfide modification. Chem. Eng. J. 358, 1235–1242 (2019)

    Article  Google Scholar 

  29. Xu, H.M., Qu, Z., Huang, W.J., Mei, J., Chen, W.M., Zhao, S.J., Yan, N.Q.: Regenerable Ag/graphene sorbent for elemental mercury capture at ambient temperature. Colloids Surf. A 476, 83–89 (2015)

    Article  Google Scholar 

  30. Reddy, K.S.K., Shoaibi, A.A., Srinivasakannan, C.: Sulfur-leaching facts from sulfur-impregnated porous carbons in the mercury removal process. Energ. Fuel. 29, 4488–4491 (2015)

    Article  Google Scholar 

  31. Yang, Y.J., Liu, J., Wang, Z., Long, Y., Ding, J.Y.: Interface reaction activity of recyclable and regenerable Cu-Mn spinel-type sorbent for Hg0 capture from flue gas. Chem. Eng. J. 372, 697–707 (2019)

    Article  Google Scholar 

  32. Zhang, H., Zhao, J.T., Fang, Y.T., Huang, J.J., Wang, Y.: Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas. Energy Fuels 26(3), 1629–1637 (2012)

    Article  Google Scholar 

  33. Hutson, N.D., Atwood, B.C., Scheckel, K.G.: XAS and XPS characterization of mercury binding on brominated activated carbon. Environ. Sci. Technol. 41(5), 1747–1752 (2007)

    Article  Google Scholar 

  34. Reddy, K.S.K., Prabhu, A., Shoaibi, A.A., Srinivasakannan, C.: Application of sulfonated carbons for mercury removal in gas processing. Energy Fuels 30, 3227–3232 (2016)

    Article  Google Scholar 

  35. Sano, A., Takaoka, M., Shiota, K.: Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chem. Eng. J. 315, 598–607 (2017)

    Article  Google Scholar 

  36. Zhang, X.Y., Dong, Y., Cui, L., An, D.H., Feng, Y.Y.: Removal of elemental mercury from coal pyrolysis gas using Fe-Ce oxides supported on lignite semi-coke modified by the hydrothermal impregnation method. Energy Fuels 32, 12861–12870 (2018)

    Article  Google Scholar 

  37. Carmen, S.D.R., Luís, M.M., Rui, A.R.B.: Treatment of textile dye waste waters using ferrous sulphate in a chemical coagulation/flocculation process. Environ. Technol. 34, 719–729 (2013)

    Article  Google Scholar 

  38. Kushwaha, J.P., Srivastava, V.C., Mall, I.D.: Treatment of dairy wastewater by inorganic coagulants: parametric and disposal studies. Water Res. 44, 5867–5874 (2010)

    Article  Google Scholar 

  39. Pan, Z.H., Tian, J.Y., Xu, G.R., Li, J.J., Li, G.B.: Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment. Water Res. 45, 819–827 (2011)

    Article  Google Scholar 

  40. Yang, X., Xu, G.R., Yu, H.R., Zhang, Z.: Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresour. Technol. 211, 566–573 (2016)

    Article  Google Scholar 

  41. Wu, S.J., Uddin, M.A., Sasaoka, E.: Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents. Fuel 85, 213–218 (2006)

    Article  Google Scholar 

  42. Wang, Y., Li, H.H., He, Z., Zhang, M., Guan, J.M., Qian, K.K., Xu, J.J., Hu, J.J.: Removal of elemental mercury from flue gas using the magnetic Fe-containing carbon prepared from the sludge flocculated with ferrous sulfate. Environ. Sci. Pollut. Res. 27, 30254–30264 (2020)

    Article  Google Scholar 

  43. Biniak, S., Szymański, G., Siedlewski, J., Świtkowski, A.: The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997)

    Article  Google Scholar 

  44. Yang, S.J., Guo, Y.F., Yan, N.Q., Wu, D.Q., He, H.P., Xie, J.K., Qu, Z., Jia, J.P.: Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture. Appl. Catal. B 101, 698–708 (2011)

    Article  Google Scholar 

  45. Gao, L., Li, C.T., Li, S.H., Zhang, W., Du, X.Y., Huang, L., Zhu, Y.C., Zhai, Y.B., Zeng, G.M.: Superior performance and resistance to SO2 and H2O over CoOx-modifed MnOx/biomass activated carbons for simultaneous Hg0 and NO removal. Chem. Eng. J. 371, 781–795 (2019)

    Article  Google Scholar 

  46. Xu, Y., Luo, G.Q., Pang, Q.C., He, S.W., Deng, F.F., Xu, Y.Q., Yao, H.: Adsorption and catalytic oxidation of elemental mercury over regenerable magnetic Fe-Ce mixed oxides modified by non-thermal plasma treatment. Chem. Eng. J. 358, 1454–1463 (2019)

    Article  Google Scholar 

  47. Li, H.H., Wang, S.K., Wang, X., Hu, J.J.: Activity of CuCl2-modified cobalt catalyst supported on Ti-Ce composite for simultaneous catalytic oxidation of Hg0 and NO in a simulated pre-sco process. Chem. Eng. J. 316, 1103–1113 (2017)

    Article  Google Scholar 

  48. Hou, W.H., Zhou, J.S., Qi, P., Gao, X., Luo, Z.Y.: Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2. Chem. Eng. J. 241, 131–137 (2014)

    Article  Google Scholar 

  49. Zhang, A.C., Zhang, Z.H., Chen, J.J., Sheng, W., Sun, L.S., Xiang, J.: Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal. Fuel Process. Technol. 135, 25–33 (2015)

    Article  Google Scholar 

  50. Liu, W., Vidic, R.D., Brown, T.D.: Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environ. Sci. Technol. 34(1), 154–159 (1999)

    Article  Google Scholar 

  51. Pavlish, J.H., Hamre, L.L., Zhuang, Y.: Mercury control technologies for coal combustion and gasification systems. Fuel 89(4), 838–847 (2010)

    Article  Google Scholar 

  52. Gosiewski, K., Tańczyk, M.: Applicability of membrane reactor for WGS coal derived gas processing: simulation-based analysis. Catal. Today 176, 373–382 (2011)

    Article  Google Scholar 

  53. Wang, Z., Liu, J., Yang, Y.J., Miao, S., Shen, F.H.: Effect of the mechanism of H2S on elemental mercury removal using the MnO2 sorbent during coal gasification. Energy Fuels 32(4), 4453–4460 (2018)

    Article  Google Scholar 

  54. Kong, L.N., Zou, S.J., Mei, J., Geng, Y., Zhao, H., Yang, S.J.: Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg0 from non-ferrous metal smelting flue gas: Performance and reaction mechanism. Environ. Sci. Technol. 52(17), 10003–10010 (2018)

    Article  Google Scholar 

  55. Zhang, H.W., Wang, J., Liu, T., Zhang, M.Z., Hao, L.F., Phoutthavong, T., Liang, P.: Cu-Zn oxides nanoparticles supported on SBA-15 zeolite as a novel adsorbent for simultaneous removal of H2S and Hg0 in natural gas. Chem. Eng. J. 426, 131286 (2021)

    Article  Google Scholar 

  56. Wu, S.J., Oya, N., Ozaki, M., Kawakami, J., Uddin, M.A., Sasaoka, E.: Development of iron oxide sorbents for Hg0 removal from coal derived fuel gas: sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal. Fuel 86, 2857–2863 (2007)

    Article  Google Scholar 

  57. Koyuncu, D., Yasyerli, S.: Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of H2S to sulfur. Ind. Eng. Chem. Res. 48(11), 5223–5229 (2009)

    Article  Google Scholar 

  58. Wang, F.J., Wang, R., Jia, T., Wu, J., Xu, C.F., Sun, Y., Wang, X., Wu, W.Y., Qi, Y.F.: Spherical-shaped CuS modified carbon nitride nanosheet for efficient capture of elemental mercury from flue gas at low temperature. J. Hazard. Mater. 415, 125692 (2021)

    Article  Google Scholar 

  59. Wang, L.L., Ji, L.P., Li, W.W., Zhang, K., Xu, H.M., Huang, W.J., Yan, N.Q., Qu, Z.: Fabrication of Cu2S hollow nanocages with enhanced high-temperature adsorption activity and recyclability for elemental mercury capture. Chem. Eng. J. 427, 130935 (2022)

    Article  Google Scholar 

  60. Zhou, J.S., Hou, W.H., Qi, P., Gao, X., Luo, Z.Y., Cen, K.F.: CeO2-TiO2 sorbents for the removal of elemental mercury from syngas. Environ. Sci. Technol. 47, 10056–10062 (2013)

    Article  Google Scholar 

  61. Shen, F.H., Liu, J., Dong, Y.C., Wu, D.W., Gu, C.K., Zhang, Z.: Elemental mercury removal from syngas by porous carbon-supported CuCl2 sorbents. Fuel 239, 138–144 (2019)

    Article  Google Scholar 

  62. Wang, P.Y., Su, S., Xiang, J., Cao, F., Sun, L.S., Hu, S., Lei, S.Y.: Catalytic oxidation of Hg0 by CuO-MnO2-Fe2O3/γ-Al2O3 catalyst. Chem. Eng. J. 225, 68–75 (2013)

    Article  Google Scholar 

  63. Li, H.H., Wang, Y., Wang, S.K., Wang, X., Hu, J.J.: Promotional effect of Mo addition on CoOx/Ti-Ce catalyst for oxidation removal of elemental mercury in flue gas. Fuel 224, 424–433 (2018)

    Article  Google Scholar 

  64. Yan, R., Ng, Y.L., Liang, D.T., Lim, C.S., Tay, J.H.: Bench-scale experimental study on the effect of flue gas composition on mercury removal by activated carbon adsorption. Energy Fuels 17(6), 1528–1535 (2003)

    Article  Google Scholar 

  65. Zhang, H.W., Zhao, K., Gao, Y.Y., Tian, Y.Y., Liang, P.: Inhibitory effects of water vapor on elemental mercury removal performance over cerium-oxide-modified semi-coke. Chem. Eng. J. 324, 279–286 (2017)

    Article  Google Scholar 

  66. Zhou, Q., Duan, Y.F., Hong, Y.G., Zhu, C., She, M., Zhang, J., Wei, H.Q.: Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon. Fuel Process. Technol. 134, 325–332 (2015)

    Article  Google Scholar 

  67. Liu, Z.Y., Adewuyi, Y.G., Shi, S., Chen, H., Li, Y., Liu, D.J., Liu, Y.X.: Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chem. Eng. J. 366, 41–49 (2019)

    Article  Google Scholar 

  68. Fan, B.G., Jia, L., Li, B., Yao, Y.X., Huo, R.P., Zhao, R., Qiao, X.L., Jin, Y.: Study on the effects of the pyrolysis atmosphere on the elemental mercury adsorption characteristics and mechanism of biomass char. Energy Fuels 32, 6869–6878 (2018)

    Article  Google Scholar 

  69. Sama, N., Johari, K., Kong, H., Mohtar, S.S., Hassan, O., Ali, N., Mat, H.: Enhanced elemental mercury removal by facile sulfurization of agrowaste chars. Chem. Eng. Res. Des. 144, 198–208 (2019)

    Article  Google Scholar 

  70. Yue, H.F., Lu, P., Su, W., Xing, Y., Li, R., Wang, J.Q.: Simultaneous removal of NOx and Hg0 from simulated flue gas over CuaCebZrcO3/γ-Al2O3 catalysts at low temperatures: performance, characterization, and mechanism. Environ. Sci. Pollut. Res. 26, 13602–13618 (2019)

    Article  Google Scholar 

  71. Ozaki, M., Uddin, M.A., Sasaoka, E., Wu, S.J.: Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel 87, 3610–3615 (2008)

    Article  Google Scholar 

  72. Rumayor, M., Gallego, J., Rodríguez-Valdés, E., Díaz-Somoano, M.: An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption. J. Hazard. Mater. 325, 1–7 (2017)

    Article  Google Scholar 

  73. Xu, H.M., Yuan, Y., Liao, Y., Xie, J.K., Qu, Z., Shangguan, W.F., Yan, N.Q.: [MoS4]2– cluster bridges in Co-Fe layered double hydroxides for mercury uptake from S-Hg mixed flue gas. Environ. Sci. Technol. 51, 10109–10116 (2017)

    Article  Google Scholar 

  74. His, H.C., Rood, M.J., Rostam-Abadi, M., Chang, Y.: Effects of sulfur, nitric acid, and thermal treatments on the properties and mercury adsorption of activated carbons from bituminous coals. Aerosol Air Qual. Res. 13, 730–738 (2013)

    Article  Google Scholar 

  75. Liu, W., Vidić, R.D., Brown, T.D.: Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ. Sci. Technol. 32, 531–538 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hubei Province (2019CFB324) and the Fundamental Research Funds for the Central Universities, Zhongnan University of Economics and Law (2722020JCG065, 31512000061 and 31510000128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Rong, H., Zhang, J. et al. Investigation of a Carbon-Based Sorbent Prepared from FeSO4-Flocculated Sludge for Elemental Mercury Removal from Syngas. Waste Biomass Valor 13, 1323–1337 (2022). https://doi.org/10.1007/s12649-021-01583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01583-y

Keywords

Navigation