Skip to main content
Log in

Towards Valorization of Bovine Blood Plasma: Optimal Design of a Culture Medium Based on Bovine Blood Plasma with Enzymatically Hydrolyzed Proteins for the Growth of a Probiotic Bacterium by Submerged Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Bovine blood plasma (BBP), a waste stream from some slaughterhouses, represents an alternative feedstock to be used as a nitrogen source for microbial cultivation. The objective of this research was to evaluate the feasibility of producing Lactobacillus plantarum by submerged fermentation on a laboratory scale in different culture media based on protein BBP hydrolyzates.

Methods

Six protein hydrolyzates from BBP were obtained using commercial alkaline protease to prepare liquid media with different contents of assimilable nitrogen in a 3-L glass reactor with a water recirculation jacket. L. plantarum ATCC 8014 was cultivated in those media with contents of assimilable nitrogen from 582 to 1097 mg/L, and sucrose from 20 to 80 g/L up to a time of 60 h. The response volume methodology and a numerical optimization method were used to find the optimal values of these variables.

Results

Optimal treatment maximizing the viable cell concentration of L. plantarum is associated with a sucrose concentration of 80 g/L, an amino nitrogen content of 825 mg/L, and a culture time of approximately 34 h.

Conclusions

The obtained results are relevant for the future design of a biotechnological process for BBP valorization to obtain starter cultures for the meat industry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akan, J.C., Abdulrahman, F.I., Yusuf, E.: Physical and chemical parameters in abattoir wastewater sample, Maiduguri Metropolis, Nigeria. Pac. J. Sci. Technol. 11(1), 640–648 (2010)

    Google Scholar 

  2. Gannon, V.P.J., Humenik, F., Rice, M., Cicmanec, J.L., Smith, J., Jr., Carr, R.: Control of zoonotic pathogens in animal wastes. In: Cotruvo, J.A., Dufour, A., Rees, G., Bartram, J., Carr, R., Cliver, D.O., Craun, G.F., Fayer, R., Gannon, V.P.J. (eds.) Waterborne zoonoses: identification, causes, and control, pp. 409–425. IWA Publishing, London (2004)

    Google Scholar 

  3. Park, K.-J., Hyun, C.-K.: Antigenotoxic effects of the peptides derived from bovine blood plasma proteins. Enzyme Microb. Technol. 30(5), 633–638 (2002). https://doi.org/10.1016/s0141-0229(02)00024-8

    Article  Google Scholar 

  4. Del Hoyo, P., Moure, F., Rendueles, M., Díaz, M.: Demineralization of animal blood plasma by ion exchange and ultrafiltration. Meat Sci. 76(3), 402–410 (2007). https://doi.org/10.1016/j.meatsci.2006.06.014

    Article  Google Scholar 

  5. Rodriguez, L.T., Rinaldoni, A.N., Padilla, A.P., Campderrós, M.E.: Assessment of functional properties of bovine plasma proteins compared with other protein concentrates, application in a hamburguer formulation. Am. J. Food Technol. 6(9), 717–729 (2011). https://doi.org/10.3923/ajft.2011.717.729

    Article  Google Scholar 

  6. Hernández-Fydrych, V.C., Benítez-Olivares, G., Meraz-Rodríguez, M.A., Salazar-Peláez, M.L., Fajardo-Ortiz, M.C.: Methane production kinetics of pretreated slaughterhouse wastewater. Biomass Bioenergy. 130, 105385 (2019). https://doi.org/10.1016/j.biombioe.2019.105385

    Article  Google Scholar 

  7. Caixeta, C.E.T., Cammarota, M.C., Xavier, A.M.F.: Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Bioresour. Technol. 81(1), 61–69 (2002). https://doi.org/10.1016/S0960-8524(01)00070-0

    Article  Google Scholar 

  8. Linden, G., Lorient, D.: Bioquímica agroindustrial: revalorización alimentaria de la producción agrícola (agro-industrial biochemistry: food revalorization of the agricultural production, in Spanish). Acribia, Zaragoza (1997)

    Google Scholar 

  9. Rodriguez Furlán, L.T., Lecot, J., Pérez Padilla, A., Campderrós, M.E., Zaritzky, N.: Stabilizing effect of saccharides on bovine plasma protein: a calorimetric study. Meat Sci. 91(4), 478–485 (2012). https://doi.org/10.1016/j.meatsci.2012.02.035

    Article  Google Scholar 

  10. Montero, P.M., Durán, M., Marrugo, Y.: Estimación de la digestibilidad in vitro de una bebida refrescante adicionada con proteína plasmática (estimation of in vitro digestibility of a refreshing drink added with plasma protein, in Spanish). Vitae 19(1), S300–S302 (2012)

    Google Scholar 

  11. Viana, F.R., Silva, V.D.M., Delvivo, F.M., Bizzotto, C.S., Silvestre, M.P.C.: Quality of ham pâté containing bovine globin and plasma as fat replacers. Meat Sci. 70(1), 153–160 (2005). https://doi.org/10.1016/j.meatsci.2004.12.013

    Article  Google Scholar 

  12. Yousif, A.M., Cranston, P., Deeth, H.C.: Incorporation of bovine dry blood plasma into biscuit flour for the production of pasta. LWT - Food Sci. Technol. 36(3), 295–302 (2003). https://doi.org/10.1016/S0023-6438(02)00215-3

    Article  Google Scholar 

  13. Tirado, D.F., Paternina-Sierra, K., Castillo, P., Correa, D., Gonzalez-Morelo, K.: Rheological properties of sweetened sesame paste formulated with bovine blood plasma. Int. J. Eng. Technol. 9, 3895–3901 (2017). https://doi.org/10.21817/ijet/2017/v9i5/170905174

    Article  Google Scholar 

  14. Toldrá, F., Aristoy, M.C., Mora, L., Reig, M.: Innovations in value-addition of edible meat by-products. Meat Sci. 92(3), 290–296 (2012). https://doi.org/10.1016/j.meatsci.2012.04.004

    Article  Google Scholar 

  15. Baldi, G., Soglia, F., Petracci, M.: Valorization of meat by-products. In: Galanakis, C.M. (ed.) Food waste recovery, pp. 419–443. Academic Press, San Diego (2021)

    Chapter  Google Scholar 

  16. Seo, H.-W., Jung, E.-Y., Go, G., Kim, G.-D., Joo, S.-T., Yang, H.-S.: Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology. Food Chem. 185, 106–111 (2015). https://doi.org/10.1016/j.foodchem.2015.03.133

    Article  Google Scholar 

  17. Sánchez, ÓJ., Barragán, P.J., Serna, L.: Review of Lactobacillus in the food industry and their culture media. Rev. Colomb. Biotecnol. 21(2), 63–76 (2019). https://doi.org/10.15446/rev.colomb.biote.v21n2.81576

    Article  Google Scholar 

  18. Lee, K., Kim, H.-J., Lee, E.-J.: Mixed cultures of Kimchi lactic acid bacteria show increased cell density and lactate productivity. Afr. J. Biotechnol. (2013). https://doi.org/10.5897/AJB2013.12007

    Article  Google Scholar 

  19. Cizeikiene, D., Juodeikiene, G., Paskevicius, A., Bartkiene, E.: Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control. 31(2), 539–545 (2013). https://doi.org/10.1016/j.foodcont.2012.12.004

    Article  Google Scholar 

  20. Topisirovic, L., Kojic, M., Fira, D., Golic, N., Strahinic, I., Lozo, J.: Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int. J. Food Microbiol. 112(3), 230–235 (2006). https://doi.org/10.1016/j.ijfoodmicro.2006.04.009

    Article  Google Scholar 

  21. Argyri, A.A., Zoumpopoulou, G., Karatzas, K., Tsakalidou, E., Nychas, G., Panagou, E., Tassou, C.: Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33(2), 282–291 (2013). https://doi.org/10.1016/j.fm.2012.10.005

    Article  Google Scholar 

  22. Axelsson, L.: Lactic acid bacteria: classification and physiology. In: Salminen, S., von Wright, A., Ouwehand, A. (eds.) Lactic acid bacteria. Microbiological and functional aspects, vol. 139, pp. 1–66. Marcel Dekker, New York (2004)

    Google Scholar 

  23. Seddik, H.A., Bendali, F., Gancel, F., Fliss, I., Spano, G., Drider, D.: Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins. 9(2), 111–122 (2017). https://doi.org/10.1007/s12602-017-9264-z

    Article  Google Scholar 

  24. Lash, B.W., Mysliwiec, T.H., Gourama, H.: Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC 8014). Food Microbiol. 22(2), 199–204 (2005). https://doi.org/10.1016/j.fm.2004.03.006

    Article  Google Scholar 

  25. Eckert, C., Serpa, V.G., Felipe dos Santos, A.C., Marinês da Costa, S., Dalpubel, V., Lehn, D.N., Volken de Souza, C.F.: Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT - Food Sci. Technol. 82, 176–183 (2017). https://doi.org/10.1016/j.lwt.2017.04.045

    Article  Google Scholar 

  26. Mitrea, L., Călinoiu, L.-F., Precup, G., Bindea, M., Rusu, B., Trif, M., Ferenczi, L.-J., Ştefănescu, B.-E., Vodnar, D.-C.: Inhibitory potential of Lactobacillus plantarum on Escherichia Coli. Bull. UASVM Food Sci. Technol. (2017). https://doi.org/10.15835/buasvmcn-fst:0031

  27. Barboza, Y., Marquez, E., Arias, B., Faría, J., Castejón, O.: Utilización del plasma sanguíneo de bovino como fuente proteica en la formulación de un medio de cultivo para lactobacilos (use of bovine blood plasma as a protein source to formulate a culture medium for lactobacilli, in Spanish). Rev. Cient. Fac. Cienc. Vet. Univ. Zulia 4(1), 55–59 (1994)

    Google Scholar 

  28. Man, J.C., Rogosa, M., Sharpe, M.E.: A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23, 130–135 (1960). https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  29. Hyun, C.-K., Shin, H.-K.: Utilization of bovine blood plasma obtained from a slaughterhouse for economic production of probiotics. J. Ferment. Bioeng. 86(1), 34–37 (1998). https://doi.org/10.1016/S0922-338X(98)80030-5

    Article  Google Scholar 

  30. Figueroa, O.A., Zapata, J., Gutiérrez, G.A.: Modelamiento de la cinética de hidrólisis enzimática de proteínas del plasma bovino (modeling of the kinetics of enzymatic hydrolysis of bovine plasma proteins, in Spanish). Rev. EIA 9(17), 71–84 (2012)

    Article  Google Scholar 

  31. Marquez, M., Vázquez, M.: Modeling of enzymatic protein hydrolysis. Process Biochem. 35(1–2), 111–117 (1999)

    Article  Google Scholar 

  32. Barragán, P.J., Sánchez, O.J., Montoya, S.: Modelamiento de la cinética de hidrólisis de las proteínas del plasma sanguíneo bovino con endoproteasa alcalina bacteriana (modeling of the hydrolysis kinetics of the proteins from bovine blood plasma using bacterial alkaline endoprotease, in Spanish). Vitae 23, S264–S268 (2016)

    Google Scholar 

  33. ICONTEC: Norma Técnica Colombiana 529. Cereales y productos cereales. Determinación del contenido de humedad (Colombian Technical Standard 529. Cereals and cereal products. Determination of the moisture content, in Spanish). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá (2009)

  34. ICONTEC: Gravimetric method. In: Norma Técnica Colombiana 4722. Leche y productos lácteos. Método para determinar el contenido de grasa. Método gravimétrico (Colombian Technical Standard 4722. Milk and dairy products. Method to determine fat content, in Spanish). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá (1999)

  35. Kjeldahl, J.: Neue methode zur bestimmung des stickstoffs in organischen körpern (new method for the determination of nitrogen in organic bodies, in German). Z. Anal. Chem. 22(1), 366–382 (1883). https://doi.org/10.1007/bf01338151

    Article  Google Scholar 

  36. ICONTEC: Norma Técnica Colombiana NTC 1325 (quinta actualización): productos cárnicos procesados no enlatados (Colombian Technical Standard NTC 1325 (update fifth): non-canned processed meat products). Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá (2008)

  37. Siltanen, P., Kekki, M.: Determination of protein by the biuret reaction using cupric hydroxide suspension reagent. Scand. J. Clin. Lab. Invest. 12(2), 228–234 (1960). https://doi.org/10.3109/00365516009062427

    Article  Google Scholar 

  38. Ossa, J.A., Vanegas, M.C., Badillo, A.M.: valuación de la melaza de caña como sustrato para el crecimiento de Lactobacillus plantarum (evaluation of cane molasses as substrate for Lactobacillus plantarum growth, in Spanish). Rev. UDCA Act. Div. Cient. 13(1), 97–104 (2010). https://doi.org/10.31910/rudca.v13.n1.2010.713

    Article  Google Scholar 

  39. AOAC: Official methods of analysis. Association of Official Analytical Chemists (AOAC), Washington (1980)

    Google Scholar 

  40. He, Z., Qi, W., He, M.: A novel exponential kinetic model for casein tryptic hydrolysis to prepare active peptides. Chin. J. Chem. Eng. 10(5), 562–566 (2002)

    Google Scholar 

  41. Gänzle, M.G.: Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2, 106–117 (2015). https://doi.org/10.1016/j.cofs.2015.03.001

    Article  Google Scholar 

  42. Law, B.A., Kolstad, J.: Proteolytic systems in lactic acid bacteria. Antonie Van Leeuwenhoek. 49(3), 225–245 (1983). https://doi.org/10.1007/BF00399500

    Article  Google Scholar 

  43. Poolman, B., Kunji, E.R.S., Hagting, A., Juillard, V., Konings, W.N.: The proteolytic pathway of emopen Lactococcus lactisemclose. Soc. Appl. Bacteriol. Symp. Ser. 24, 65S-75S (1995)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Vice–rectorate of Research and Post–graduate Studies at the Universidad de Caldas for its administrative support, as well as the Food Microbiology Laboratory of the Food Technological Unit at the Universidad de Caldas for its logistic assistance.

Funding

This work was supported by the Fund for Science, Technology, and Innovation of the Colombian General System of Royalties (Grant BPIN 2012000100178) and the Universidad de Caldas (Grant 0700413) through the research project “Implementation of a comprehensive strategy through biotechnological innovation for agro-industrial waste utilization in the Department of Caldas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar J. Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barragán, P.J., Sánchez, Ó.J. & Martínez, L.J. Towards Valorization of Bovine Blood Plasma: Optimal Design of a Culture Medium Based on Bovine Blood Plasma with Enzymatically Hydrolyzed Proteins for the Growth of a Probiotic Bacterium by Submerged Fermentation. Waste Biomass Valor 13, 1143–1155 (2022). https://doi.org/10.1007/s12649-021-01562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01562-3

Keywords

Navigation