Skip to main content
Log in

Production and Recovery of Exo-polygalacturonase from Umbu (Spondias tuberosa) Residue

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of the present work was to produce exo-polygalacturonase by solid-state fermentation of the dehydrated peels of umbu (Spondias tuberosa) using Aspergillus niger CCT 0916 and then, using a biphasic aqueous system, recover the enzyme. The peels were dehydrated at 55 °C to obtain the dried residue and then used to produce the exo-polygalacturonase using Aspergillus niger CCT 0916 and solid-state fermentation. During the 72 h fermentation, the pH, reducing sugars, and the exo-polygalacturonase activity were tested. Then the extracted enzyme was recovered with a biphasic aqueous system composed of PEG/potassium phosphate. The umbu dried residue showed a maximum peak of enzymatic activity with values of 17.30 U/g after 44 h of fermentation. The enzyme extraction using the dried umbu residue yielded a maximum PGA (Activity polygalacturonase) of 32.59 U/g. The biphasic aqueous system composed of PEG8000 and potassium phosphate salts yielded the highest recovery of 97.14%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Gupta, N., Poddar, K., Sarkar, D., Kumari, N., Padhan, B., Sarkar, A.: Fruit waste management by pigment production and utilization of residual as bioadsorbent. J. Environ. Manag. 244, 138–143 (2019). https://doi.org/10.1016/j.jenvman.2019.05.055

    Article  Google Scholar 

  2. Martins, Q.S.A., de Barros, H.E.A., da Cunha, S.L., Gualberto, S.A., da Silva, M.V.: Resíduos da indústria processadora de polpas de frutas: capacidade antioxidante e fatores antinutricionais. Rev. Agronegócio Meio Amb. 12(2), 591–608 (2019). https://doi.org/10.17765/2176-9168.2019v12n2p591-608

    Article  Google Scholar 

  3. Miguel, A.C.A., Albertini, S., Begiato, G.F., Dias, J.R.P.S., Spoto, M.H.F.: Aproveitamento agroindustrial de resíduos sólidos provenientes do melão minimamente processado. LWT-Food Sci. and Technol. 28(3), 733–737 (2008). https://doi.org/10.1590/S0101-20612008000300033

    Article  Google Scholar 

  4. Sousa, F.C., Silva, L.M.M., Lemos, D.M., Moreira, I.S., Lins, A.D.F., Castro, D.S., Rocha, A.P.T.: Secagem de residuos de Spondias sp. em camada fina. Agrotec 36(1), 197–202 (2015)

    Google Scholar 

  5. Hole, A.S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., Sahlstrøm, S.: Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J. Agric. Food Chem. 60(25), 6369–6375 (2012). https://doi.org/10.1021/jf300410h

    Article  Google Scholar 

  6. Mao, M., Wang, P., Shi, K., Lu, Z., Bie, X., Zhao, H., Lv, F.: Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J. Cereal Sci. (2020). https://doi.org/10.1016/j.jcs.2020.102997

    Article  Google Scholar 

  7. Soccol, C.R., da Costa, E.S.F., Letti, L.A.J., Karp, S.G., Woiciechowski, A.L., de Souza Vandenberghe, L.P.: Recent developments and innovations in solid state fermentation. Biotech. Res. Innov. 1(1), 52–71 (2017). https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  8. Mandari, V., Nema, A., Devarai, S.K.: Sequential optimization and large scale production of lipase using tri-substrate mixture from Aspergillus niger MTCC 872 by solid state fermentation. Process Biochem 89, 46–54 (2020). https://doi.org/10.1016/j.procbio.2019.10.026

    Article  Google Scholar 

  9. Prakash, G.B., Padmaja, V., Kiran, R.S.: Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour. Technol. 99(6), 1530–1537 (2008). https://doi.org/10.1016/j.biortech.2007.04.031

    Article  Google Scholar 

  10. Olukomaiya, O.O., Adiamo, O.Q., Fernando, W.C., Mereddy, R., Li, X., Sultanbawa, Y.: Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 315, 126238 (2020). https://doi.org/10.1016/j.foodchem.2020.126238

    Article  Google Scholar 

  11. Rayaprolu, S.J., Hettiarachchy, N.S., Chen, P., Kannan, A., Mauromostakos, A.: Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Res. Int. 50(1), 282–288 (2013). https://doi.org/10.1016/j.foodres.2012.10.021

    Article  Google Scholar 

  12. Aliyah, A.N., Edelweiss, E.D., Sahlan, M., Wijanarko, A., Hermansyah, H.: Solid state fermentation using agroindustrial wastes to produce Aspergillus niger lipase as a biocatalyst immobilized by an adsorption-crosslinking method for biodiesel synthesis. Int. J. Eng. Technol. 7(8), 1393–1404 (2016). https://doi.org/10.14716/ijtech.v7i8.6988

    Article  Google Scholar 

  13. Utami, T.S., Hariyani, I., Alamsyah, G., Hermansyah, H.: Production of dry extract extracellular lipase from Aspergillus niger by solid state fermentation method to catalyze biodiesel synthesis. Energy Procedia 136, 41–46 (2017). https://doi.org/10.1016/j.egypro.2017.10.275

    Article  Google Scholar 

  14. Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol 77(3), 215–227 (2001). https://doi.org/10.1016/S0960-8524(00)00118-8

    Article  Google Scholar 

  15. Yu, P., Xu, C.: Production optimization, purification and characterization of a heat-tolerant acidic pectinase from Bacillus sp. ZJ1407. Int. J. Biol. Macromol. 108, 972–980 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.012

    Article  Google Scholar 

  16. Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40(9), 2931–2944 (2005). https://doi.org/10.1016/j.procbio.2005.03.026

    Article  Google Scholar 

  17. Lu, X., Lin, J., Wang, C., Du, X., Cai, J.: Purification and characterization of exo-polygalacturonase from Zygoascus hellenicus V25 and its potential application in fruit juice clarification. Food Sci. Biotechnol. 25(5), 1379–1385 (2016). https://doi.org/10.1007/s10068-016-0215-3

    Article  Google Scholar 

  18. Patidar, M.K., Nighojkar, S., Kumar, A., Nighojkar, A.: Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech. 8(199), 1–24 (2018). https://doi.org/10.1007/s13205-018-1220-

    Article  Google Scholar 

  19. Amin, F., Mohsin, A., Bhatti, H.N., Bilal, M.: Production, thermodynamic characterization, and fruit juice quality improvement characteristics of an Exo-polygalacturonase from Penicillium janczewskii. BBA-proteins Proteom 1868(5), 140379 (2020). https://doi.org/10.1016/j.bbapap.2020.140379

    Article  Google Scholar 

  20. Grilo, A.L., Barros, R.A.M., Azevedo, A.M.: Partitioning in aqueous two-phase systems: fundamentals, applications and trends. Sep. Purif. Rev. 45(1), 68–80 (2016). https://doi.org/10.1080/15422119.2014.983128

    Article  Google Scholar 

  21. Molino, J.V.D., Marques, D.D.A.V., Júnior, A.P., Mazzola, P.G., Gatti, M.S.V.: Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol. Prog. 29(6), 1343–1353 (2013). https://doi.org/10.1002/btpr.1792

    Article  Google Scholar 

  22. Asenjo, J.A., Andrews, B.A.: Sistemas de duas fases aquosas para separação de proteínas: uma perspectiva. J. Chromatogr. 218, 8826–8835 (2011). https://doi.org/10.1016/j.chroma.2011.06.051

    Article  Google Scholar 

  23. Raja, S., Murty, V.R., Thivaharan, V., Rajasekar, V., Ramesh, V.: Aqueous two phase systems for the recovery of biomolecules–a review. Sci. Technol. 1(1), 7–16 (2011). https://doi.org/10.5923/j.scit.20110101.02

    Article  Google Scholar 

  24. AOAC: Official methods of analysis of AOAC International, 20th edn. AOAC international, Rockville (2016)

    Google Scholar 

  25. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  26. Ranganna, S.: Manual of analysis of fruit and vegetable products. Tata McGraw-Hill, New Delhi (2004)

    Google Scholar 

  27. Statsoft. (2007). Statistica for window—Computer programa manual (Versão 7.0). Tulsa: Statsoft Inc.

  28. Couri, S., da Costa Terzi, S., Pinto, G.A.S., Freitas, S.P., da Costa, A.C.A.: Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8. Process. Biochem. 36(3), 255–261 (2000). https://doi.org/10.1016/S0032-9592(00)00209-0

    Article  Google Scholar 

  29. Souza, R.L., Oliveira, L.D.S., da Silva, F.L., Amorim, B.C.: Caracterização da poligalacturonase produzida por fermentação semi-sólida utilizando-se resíduo do maracujá como substrato. Rev. Bras. Eng. Agric. Ambient. 14(9), 987–992 (2010). https://doi.org/10.1590/S1415-43662010000900011

    Article  Google Scholar 

  30. Castilho, L.R., Medronho, R.A., Alves, T.L.: Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 71(1), 45–50 (2000). https://doi.org/10.1016/S0960-8524(99)00058-9

    Article  Google Scholar 

  31. Sousa, C.A., da Silva, F.L., Conrado, L.D.S.: Lixiviação de poligalacturonases obtidas pela fermentação semissólida da casca e albedo do maracujá-amarelo. Rev. Bras. Eng. Agríc. Ambient. 16(7), 790–794 (2012). https://doi.org/10.1590/S1415-43662012000700013

    Article  Google Scholar 

  32. Albertsson, P.A.: Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology, 3rd edn. Wiley-Interscience, New York (1986)

    Google Scholar 

  33. Zhang, Y.Y., Liu, J.H.: Purification and in situ immobilization of lipase from of a mutant of Trichosporon laibacchii using aqueous two-phase systems. J. Chromatogr. B 878(11–12), 909–912 (2010)

    Article  Google Scholar 

  34. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1/2), 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  35. Lima, Á.S., Alegre, R.M., Meirelles, A.J.: Partitioning of pectinolytic enzymes in polyethylene glycol/potassium phosphate aqueous two-phase systems. Carbohydr. Polym. 50(1), 63–68 (2002). https://doi.org/10.1016/S0144-8617(01)00376-9

    Article  Google Scholar 

  36. Ascheri, D.P.R., Ascheri, J.L.R., Carvalho, C.W.P.D.: Caracterização da farinha de bagaço de jabuticaba e propriedades funcionais dos extrusados. LWT-Food Sci. Technol. 26(4), 897–905 (2006). https://doi.org/10.1590/S0101-20612006000400029

    Article  Google Scholar 

  37. Abud, A.D.S., Narain, N.: Incorporation of fruit pulp residue flour into cookies: an alternative to combat waste. Braz. J. Food Technol. 12(1/4), 257–265 (2009). https://doi.org/10.4260/BJFT2009800900020

    Article  Google Scholar 

  38. Franco, B.D.G.M.: Microbiologia dos alimentos, p. 182. São Paulo, Atheneu (1999)

    Google Scholar 

  39. Malvessi, E., Silveira, M.M.D.: Influence of medium composition and pH on the production of polygalacturonases by Aspergillus oryzae. Braz. Arch. Biol. Technol. 47(5), 693–702 (2004). https://doi.org/10.1590/S1516-89132004000500004

    Article  Google Scholar 

  40. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  41. Alcântara, S.R., Almeida, F.D.A., da Silva, F.L., Gomes, J.P.: Isotermas de adsorção do pedúnculo seco do caju. Rev. Bras. Eng. Agríc. Ambient. 13(1), 81–87 (2009). https://doi.org/10.1590/S1415-43662009000100012

    Article  Google Scholar 

  42. Muniz, C.E.S., Santiago, A.M., Gusmão, T.A.S., Oliveira, H.M.L., Corando, L.S., Gusmão, R.P.: Solid-state fermentation for single-cell protein enrichment of guava and cashew by-products and inclusion on cereal bars. Biocatal Agric Biotechnol. (2020). https://doi.org/10.1016/j.bcab.2020.101576

    Article  Google Scholar 

  43. Alexandre, H.V., Figueirêdo, R.D., Queiroz, A.D.M.: Isotermas de adsorção de umidade da pitanga em pó. Rev. Biol. Ciênc. Terra 7(1), 11–20 (2007)

    Google Scholar 

  44. Silva, H.A., Gomes, J.P., Queiroz, A.J.M.: Hygroscopic behavior and thermodynamic properties of Ziziphus joazeiro Mart Kernel Flour. J. Agric. Stud. 8(3), 50–62 (2020). https://doi.org/10.5296/jas.v8i3.15976

    Article  Google Scholar 

  45. Leonardi, J.G., Azevedo, B.M.: Métodos de conservação de alimentos. Saúde Foco 10(1), 51–61 (2018)

    Google Scholar 

  46. Pinheiro, V.E., Desagiacomo, C.C.V., Michelin, M., Maller, A., Monteiro, L.M.O., Jorge, J.A., Polizeli, M.L.T.M.: Neosartorya glabra polygalacturonase produced from fruit peels as inducers has the potential for application in passion fruit and apple juices. Braz. J. Food Technol. 20(e2016163), 1–11 (2017). https://doi.org/10.1590/1981-6723.16316

    Article  Google Scholar 

  47. Fontana, R.C., Salvador, S., Da Silveira, M.M.: Influence of pectin and glucose on growth and polygalacturonase production by Aspergillus niger in solid-state cultivation. J. Ind. Microbiol. Biotechnol. 32(8), 371–377 (2005). https://doi.org/10.1007/s10295-005-0004-0

    Article  Google Scholar 

  48. Zhang, Z., Dong, J., Zhang, D., Wang, J., Qin, X., Liu, B., Xu, X., Zhang, W., Zhang, Y.: Expression and characterization of a pectin methylesterase from Aspergillus niger ZJ5 and its application in fruit processing. J. Biosci. Bioeng. 126(6), 690–696 (2018). https://doi.org/10.1016/j.jbiosc.2018.05.022

    Article  Google Scholar 

  49. Mojsov, K.: The effects of different carbon sources on biosynthesis of pecinolytic enzymes by Aspergillus niger. Appl. Technol. Innov. 3(3), 23–29 (2010)

    Article  Google Scholar 

  50. Maidana, S.A., Danovich, C.L., Zubreski, E.R., Martos, M.A.: Extracción de pectina a partir de albedo de limón con una Poligalacturonasa de Wickerhamomyces Anomalus. Rev. Cienc. Tecnol. 32(21), 53–63 (2019). https://doi.org/10.36995/j.recyt.2019.32.009

    Article  Google Scholar 

  51. Gomes, J., Zeni, J., Cence, K., Toniazzo, G., Treichel, H., Valduga, E.: Evaluation of production and characterization of polygalacturonase by Aspergillus niger ATCC 9642. Food Bioprod. Process. 89(4), 281–287 (2011). https://doi.org/10.1016/j.fbp.2010.10.002

    Article  Google Scholar 

  52. Freitas, F., Alves, V.D., Reis, M.A.M.: Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biol. 29(8), 388–398 (2011). https://doi.org/10.1016/j.tibtech.2011.03.008

    Article  Google Scholar 

  53. Fan, C., Liu, Z., Hu, J., Niu, B., Huang, J.: Effects of polyethylene glycol 6000 and tripotassium phosphate on protopectinase partition in the aqueous two-phase systems using response surface methodology. Afr. J. Food Sci. 6(4), 85–90 (2012). https://doi.org/10.5897/AJFS11.209

    Article  Google Scholar 

  54. Porfiri, M.C., Picó, G., Romanini, D., Farruggia, B.: Aspergillus oryzae alpha-amylase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems. Int. J. Biol. Macromol. 49(1), 7–13 (2011). https://doi.org/10.1016/j.ijbiomac.2011.03.003

    Article  Google Scholar 

  55. Ratanapongleka, K.: Recovery of biological products in aqueous two phase systems. Int. J. Chem. Eng. Appl. 1(2), 191 (2010)

    Google Scholar 

  56. Naganagouda, K., Mulimani, V.H.: Aqueous two-phase extraction (ATPE): an attractive and economically viable technology for downstream processing of Aspergillus oryzae α-galactosidase. Process Biochem. 43(11), 1293–1299 (2008). https://doi.org/10.1016/j.procbio.2008.07.016

    Article  Google Scholar 

  57. Oliveira Júnior, S.D., Padilha, C.E.A., de Asevedo, E.A., de Macedo, G.R., dos Santos, E.S.: Recovery and purification of cellulolytic enzymes from Aspergillus fumigatus CCT 7873 using an aqueous two-phase micellar system. Ann. Microbiol. 70, 1–12 (2020). https://doi.org/10.1186/s13213-020-01573-w

    Article  Google Scholar 

  58. Prodanović, J.M., Antov, M.G.: The influence of molecular weight of polyethylene glycol on separation and purification of pectinases from Penicillium cyclopium in aqueous two-phase system. Acta Period. Technol. 39, 193–199 (2008). https://doi.org/10.2298/APT0839193P

    Article  Google Scholar 

  59. Mehrnoush, A., Sarker, M., Islam, Z., Mustafa, S., Yazid, A.M.M.: Direct purification of pectinase from mango (Mangifera Indica cv Chokanan) peel using a PEG/salt-based aqueous two phase system. Molecules 16(10), 8419–8427 (2011). https://doi.org/10.3390/molecules16108419

    Article  Google Scholar 

  60. Silva, L.H.M.D., Loh, W.: Sistemas aquosos bifásicos: fundamentos e aplicações para partição/purificação de proteínas. Quim. Nova 29(6), 1345–1351 (2006). https://doi.org/10.1590/S0100-40422006000600033

    Article  Google Scholar 

  61. Hemavathi, A.B., Raghavarao, K.S.M.S.: Differential partitioning of β-galactosidase and β-glucosidase using aqueous two phase extraction. Process Biochem. 46(3), 649–655 (2011). https://doi.org/10.1016/j.procbio.2010.11.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the State University of Paraíba and the Department of Chemistry.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ÂMS: Conceptualization, Methodology, Writing- Original draft preparation, Funding acquisition. LSCO: Funding acquisition, Reviewing and Editing PLO: Data Curation. RLJA: Statistic, Visualization. NCS: Software, Statistic. POG: Supervision Writing.

Corresponding author

Correspondence to Raphael Lucas Jacinto Almeida.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago, Â.M., de Sousa Conrado Oliveira, L., de Oliveira, P.L. et al. Production and Recovery of Exo-polygalacturonase from Umbu (Spondias tuberosa) Residue. Waste Biomass Valor 13, 1101–1115 (2022). https://doi.org/10.1007/s12649-021-01551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01551-6

Keywords

Navigation