Skip to main content

Advertisement

Log in

Peacock Feathers Extract Use as Template for Synthesis of Ag and Au Nanoparticles and Their Biological Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Traditionally, Peacock feathers have been used for ornamental purposes, and as a curing agent against treacherous snakes’ venom (protease enzyme). We have evaluated peacock feathers as synergetic support for the synthesis of Ag and Au nanoparticles, and their bactericidal and urease enzyme inhibitory properties. We are the first to report the synthesis of peacock feathers extract (PFE) stabilized silver (AgNPs) and gold (AuNPs) nanoparticles, and their evaluation for antibacterial and urease enzyme inhibitory activities. The corresponding nanoparticles are characterized by different spectroscopic techniques such as UV–Vis Spectroscopy, Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM). UV–Vis spectra peaks at 395 nm and 511 nm confirmed the synthesis of AgNPs and AuNPs respectively. Further, the shape and size of nanoparticles are confirmed by AFM and TEM analysis, and their sizes are in the range of 4–20 nm for AgNPs and 7–25 nm AuNPs. Moreover, the stability of nanoparticles is investigated against various parameters such as temperature, acidity, alkalinity, and salinity. Bioactivities of PFE, AgNPs, and AuNPs examined and maximum inhibition efficacy reported against urease by AgNPs nanoparticles 99.7% with IC50, 28.5 ± 0.94 μg/mL and PFE 99.4% with IC50 58.5 ± 1.39 μg/mL, and the corresponding nanoparticles also found active against different bacterial strains.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murari, S.K., Frey, F.J., Frey, B.M., Gowda, T.V., Vishwanath, B.S.: Use of Pavo cristatus feather extract for the better management of snakebites: neutralization of inflammatory reactions. J. Ethnopharmacol. 99, 229–237 (2005)

    Article  Google Scholar 

  2. Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Liu, X., Fu, R.: Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. USA 100, 12576 (2003)

    Article  Google Scholar 

  3. Ramsay, R.R., Tipton, K.F.: Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 22, 1192 (2017)

    Article  Google Scholar 

  4. Auron, A., Brophy, P.D.: Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr. Nephrol. 27, 207–222 (2012)

    Article  Google Scholar 

  5. Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J., Rappuoli, R.: Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333 (1999)

    Article  Google Scholar 

  6. Dunn, B.E., Campbell, G.P., Perez-Perez, G., Blaser, M.: Purification and characterization of urease from Helicobacter pylori. J. Biol. Chem. 265, 9464–9469 (1990)

    Article  Google Scholar 

  7. Fischbach, W., P. Malfertheiner, J. Hoffmann, W. Bolten, J. Bornschein, O. Götze, W. Höhne, M. Kist, S. Koletzko, and J. Labenz.S3-Guideline” Helicobacter pylori and gastroduodenal ulcer disease” of the German Society for Digestive and Metabolic Diseases (DGVS) in cooperation with the German Society for Hygiene and Microbiology, Society for Pediatric Gastroenterology and Nutrition e. V., German Society for Rheumatology, AWMF-Registration-no. 021/001. Zeitschrift für Gastroenterologie.47,1230–1263.(2009)

  8. Ligabue-Braun, R., Carlini, C.R.: Moonlighting toxins: ureases and beyond, in plant toxins, pp. 1–21. Springer, Cham (2015)

    Google Scholar 

  9. Lodhi, M.A.: Studies on new natural and synthetic inhibitiors of urease. University of Karachi, Karachi (2007)

    Google Scholar 

  10. Mobley, H.L.T., Belas, R.: Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol. 3, 280–284 (1995)

    Article  Google Scholar 

  11. Mora, D., Arioli, S.: Microbial urease in health and disease. PLOS Pathog. 10, e1004472 (2014)

    Article  Google Scholar 

  12. Naz, S.S., Shah, M.R., Islam, N.U., Khan, A., Nazir, S., Qaisar, S., Alam, S.S.: Synthesis and bioactivities of silver nanoparticles capped with 5-Amino-?-resorcylic acid hydrochloride dihydrate. J. Nanobiotechnol. 12, 34 (2014)

    Google Scholar 

  13. Rutherford, J.C.: The emerging role of urease as a general microbial virulence factor. PLOS Pathog. 10, e1004062 (2014)

    Article  Google Scholar 

  14. Warren, J.W., Tenney, J.H., Hoopes, J.M., Muncie, H.L., Anthony, W.C.: A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J. Infect. Dis. 146, 719–723 (1982)

    Article  Google Scholar 

  15. Amin, M., Anwar, F., Janjua, M.R.S.A., Iqbal, M.A., Rashid, U.: Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against helicobacter pylori. Int. J. Mol. Sci. 13, 9923 (2012)

    Article  Google Scholar 

  16. Barakat, A., Soliman, S.M., Ali, M., Elmarghany, A., Al-Majid, A.M., Yousuf, S., Ul-Haq, Z., Choudhary, M.I., El-Faham, A.: Synthesis, crystal structure, evaluation of urease inhibition potential and the docking studies of cobalt(III) complex based on barbituric acid Schiff base ligand. Inorganica Chimica Acta. 503, 119405 (2020)

    Article  Google Scholar 

  17. Deng, H.-H., Wu, G.-W., Zou, Z.-Q., Peng, H.-P., Liu, A.-L., Lin, X.-H., Xia, X.-H., Chen, W.: pH-Sensitive gold nanoclusters: preparation and analytical applications for urea, urease, and urease inhibitor detection. Chem. Commun. 51, 7847–7850 (2015)

    Article  Google Scholar 

  18. Hameed, A., Fatima, S., Rahman, F.U., Yoon, T.-H., Azam, A., Khan, S., Khan, A., Islam, N.U.: Synergistic enzyme inhibition effect of cefuroxime by conjugation with gold and silver. New J. Chem. 38, 1641–1646 (2014)

    Article  Google Scholar 

  19. Hameed, A., Islam, N.U., Shah, M.R., Kanwal, S.: Facile one-pot synthesis of gold nanoparticles and their sensing protocol. Chem. Commun. 47, 11987–11989 (2011)

    Article  Google Scholar 

  20. Hameed, A., I. Khan, A. Azam, S.S. Naz, A. Khan, M. Saleem, M.R. Shah, and N.U. Islam.Stability and Enzyme Inhibition Activities of Au Nanoparticles using an Aqueous Extract of Clove as a Reducing and Stabilizing Agent. Journal of the Chemical Society of Pakistan.36.(2014)

  21. Jones, S.A., Bowler, P.G., Walker, M., Parsons, D.: Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regeneration. 12, 288–294 (2004)

    Article  Google Scholar 

  22. LATEEF, A., Adeeyo, A.O.: Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Notulae Scientia Biologicae 7, 405–411 (2015)

    Article  Google Scholar 

  23. Lateef, A., Adelere, I., Gueguim-Kana, E., Asafa, T., Beukes, L.: Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5, 29–35 (2015)

    Article  Google Scholar 

  24. Nisar, M., Khan, S.A., Shah, M.R., Khan, A., Farooq, U., Uddin, G., Ahmad, B.: Moxifloxacin-capped noble metal nanoparticles as potential urease inhibitors. New J. Chem. 39, 8080–8086 (2015)

    Article  Google Scholar 

  25. Ojo, S.A., Lateef, A., Azeez, M.A., Oladejo, S.M., Akinwale, A.S., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Gueguim-Kana, E.B.: Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobiosci. 15, 433–442 (2016)

    Article  Google Scholar 

  26. Oladipo, I.C., Lateef, A., Elegbede, J.A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Gueguim-Kana, E.B., Beukes, L.S., Oluyide, T.O.: Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J. Photochem. Photobiol. B 173, 250–257 (2017)

    Article  Google Scholar 

  27. Ponnuvel, S., Subramanian, B., Ponnuraj, K.: Conformational change results in loss of enzymatic activity of jack bean urease on its interaction with silver nanoparticle. Protein. J. 34, 329–337 (2015)

    Article  Google Scholar 

  28. Qiao, S., Huang, W., Wang, T., Du, B., Chen, X., Hameed, A., Yang, R.: Multifunctional porous organic polymers embedded with magnetic nanoparticles. J. Mater. Chem. A 5, 2981–2986 (2017)

    Article  Google Scholar 

  29. Shin, Y.-J., Kwak, J.I., An, Y.-J.: Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88, 524–529 (2012)

    Article  Google Scholar 

  30. Thamphiwatana, S., Fu, V., Zhu, J., Lu, D., Gao, W., Zhang, L.: Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery. Langmuir 29, 12228–12233 (2013)

    Article  Google Scholar 

  31. Veerasamy, R., Xin, T.Z., Gunasagaran, S., Xiang, T.F.W., Yang, E.F.C., Jeyakumar, N., Dhanaraj, S.A.: Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15, 113–120 (2011)

    Article  Google Scholar 

  32. Bradbury, J.H.: The structure and chemistry of keratin fibers. Adv Protein Chem. 27, 111–211 (1973)

    Article  Google Scholar 

  33. Karthikeyan, R., Balaji, S., Sehgal, P.: Industrial applications of keratins-a review. J. Sci. Ind. Res. 66, 710 (2007)

    Google Scholar 

  34. Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R.C., Bantjes, A., Feijen, J.: Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J. Agric. Food Chem. 49, 221–230 (2001)

    Article  Google Scholar 

  35. Akintayo, G., A. Lateef, M. Azeez, T. Asafa, I. Oladipo, J. Badmus, S. Ojo, J. Elegbede, E. Gueguim-Kana, and L. Beukes. Synthesis, bioactivities and cytogenotoxicity of animal fur-mediated silver nanoparticles. In IOP conference series: materials science and engineering. 2020. IOP Publishing.

  36. Deng, D., Gopiraman, M., Kim, S.H., Chung, I.-M., Kim, I.S.: Human hair: a suitable platform for catalytic nanoparticles. ACS Sustain. Chem. Eng. 4, 5409–5414 (2016)

    Article  Google Scholar 

  37. Rohullah, A., Azam, S., Qiao, M.U., Islam, J., Ali, A., Wahab, M.A., Khan, F., Hameed, A.: Facile synthesis of hair-extract-capped gold and silver nanoparticles and their biological applications. RSC Adv. 6, 113452–113456 (2016)

    Article  Google Scholar 

  38. Singh, R., Barden, A., Mori, T., Beilin, L.: Advanced glycation end-products: a review. Diabetologia 44, 129–146 (2001)

    Article  Google Scholar 

  39. Azam, A., Qiao, S., Islam, M.U., Ali, J., Wahab, A., Khan, M.A., Hameed, A.: Facile synthesis of hair-extract-capped gold and silver nanoparticles and their biological applications. RSC Adv. 6, 113452–113456 (2016)

    Article  Google Scholar 

  40. Bradbury, J.: The structure and chemistry of keratin fibers. Adv. Protein Chem. 27, 111–211 (1973)

    Article  Google Scholar 

  41. Onifade, A., N. Al-Sane, A. Al-Musallam, and S. Al-Zarban.A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource technology.66,1–11.(1998)

  42. Schrooyen, P.M., P.J. Dijkstra, R.C. Oberthür, A. Bantjes, and J. Feijen.Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. Journal of agricultural and food chemistry.49,221–230.(2001)

  43. Robbins, C.R.: Chemical composition of different hair types. In: Chemical and physical behavior of human hair, pp. 105–176. Springer, Cham (2012)

    Chapter  Google Scholar 

  44. Lateef, A., Akande, M.A., Ojo, S.A., Folarin, B.I., Gueguim-Kana, E.B., Beukes, L.S.: Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech. 6, 1–10 (2016)

    Article  Google Scholar 

  45. Lateef, A., Ojo, S., Azeez, M., Asafa, T., Yekeen, T., Akinboro, A., Oladipo, I., Gueguim-Kana, E., Beukes, L.: Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci. 6, 863–874 (2016)

    Article  Google Scholar 

  46. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668 (2000)

    Article  Google Scholar 

  47. Gupta, R.K., Srinivasan, M.P., Dharmarajan, R.: Synthesis of 16-Mercaptohexadecanoic acid capped gold nanoparticles and their immobilization on a substrate. Mater. Lett. 67, 315–319 (2012)

    Article  Google Scholar 

  48. Rai, A., Prabhune, A., Perry, C.C.: Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789–6798 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanlin Qiao or Abdul Hameed.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, R., Azam, A., Aziz, T. et al. Peacock Feathers Extract Use as Template for Synthesis of Ag and Au Nanoparticles and Their Biological Applications. Waste Biomass Valor 13, 659–666 (2022). https://doi.org/10.1007/s12649-021-01537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01537-4

Keywords