Skip to main content
Log in

Larvicidal Activity of Pentagalloyl Glucose and Mangiferin Isolated from the Waste of Mango Kernel Against Culex pipiens L.

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The deadliest insect, Culex pipiens, plays a critical role in the transmission of multiple diseases to livestock, animals, and humans. In the current work, the waste of Mangifera indica (Mango) seed kernels was extracted with ethyl acetate to profile the gallotannins components. Moreover, the major compounds pentagalloyl glucose (PGG) and mangiferin were isolated and their larvicidal activity against C. pipiens was determined. A total of 20 secondary metabolites were annotated based on high-performance liquid chromatography with photodiode array (PDA) detector and mass spectrometry (MS) detection. PGG and mangiferin were isolated and identified depending on different chromatographic and spectroscopic techniques. The extract exhibited good larvicidal activity against the 3rd larval instar of C. pipiens with LC50 value of 64.02 µg/ml, whereas those of pentagalloyl glucose and mangiferin were 169.38 and 232.15 µg/ml, respectively. The tested extract and the two isolated secondary metabolites exploited significant alterations for the tested enzymes (acetylcholinesterase, carboxylesterase, α-esterases, glutathione S-transferase, and cytochrome P-450 monooxygenase) compared to the untreated larvae with p < 0.01. The GST, carboxylesterase, and α-esterase have the main role in the detoxification of PGG and mangiferin. In conclusion, Mango waste could provide a cheap, available, and important source for tackling an environmental problem as an ecofriendly alternative to the currently used chemical insecticides.

Graphic Abstract

The strategy of our study using M. indica kernel against C. pipiens larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cornet, S., Nicot, A., Rivero, A., Gandon, S.: Avian malaria alters the dynamics of blood feeding in Culex pipiens mosquitoes. Malar. J. 18(1), 1–6 (2019)

    Google Scholar 

  2. El-Naggar, H.A., Hasaballah, A.I.: Acute larvicidal toxicity and repellency effect of octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018)

    Google Scholar 

  3. Kumar, S., Thomas, A., Pillai, M.: Deltamethrin: promising mosquito control agent against adult stage of Aedes aegypti L. Asian Pac. J. Trop. Med. 4(6), 430–435 (2011)

    Google Scholar 

  4. Hasaballah, A.I., El-Naggar, H.A.: Antimicrobial activities of some marine sponges, and its biological, repellent effects against Culex pipiens (Diptera: Culicidae). Annu. Res. Rev. Biol. 12, 1–14 (2017)

    Google Scholar 

  5. Kumar, D., Kumar, P., Singh, H., Agrawal, V.: Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. Environ. Sci. Pollut. Res. 27, 25987–26024 (2020)

    Google Scholar 

  6. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Anthony, S.: Agroforestree Database: A Tree Reference and Selection Guide Version 4.0, vol. 15. World Agroforestry Centre, Nairobi (2009)

    Google Scholar 

  7. Silva, A.P.M., Oliveira, A.V., Pontes, S.M., Pereira, A.L., Rosa, M.F., Azeredo, H.M.: Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydr. Polym. 211, 209–216 (2019)

    Google Scholar 

  8. El-Gied, A.A.A., Joseph, M.R., Mahmoud, I.M., Abdelkareem, A.M., Al Hakami, A.M., Hamid, M.E.: Antimicrobial activities of seed extracts of mango (Mangifera indica L.). Adv. Microbiol. (2012). https://doi.org/10.4236/aim.2012.24074

    Article  Google Scholar 

  9. Lauricella, M., Lo Galbo, V., Cernigliaro, C., Maggio, A., Palumbo Piccionello, A., Calvaruso, G., Carlisi, D., Emanuele, S., Giuliano, M., D’Anneo, A.: The anti-cancer effect of Mangifera indica L. peel extract is associated to γH2AX-mediated apoptosis in colon cancer cells. Antioxidants 8(10), 422 (2019)

    Google Scholar 

  10. Hannan, A., Asghar, S., Naeem, T., Ullah, M.I., Ahmed, I., Aneela, S., Hussain, S.: Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi. Pak. J. Pharm. Sci. 26(4), 715–719 (2013)

    Google Scholar 

  11. Kumar, S., Maheshwari, K.K., Singh, V.: Effects of Mangifera indica fruit extract on cognitive deficits in mice. J. Environ. Biol. 30(4), 563 (2009)

    Google Scholar 

  12. Berardini, N., Knödler, M., Schieber, A., Carle, R.: Utilization of mango peels as a source of pectin and polyphenolics. Innov. Food Sci. Emerg. Technol. 6(4), 442–452 (2005)

    Google Scholar 

  13. Jedele, S., Hau, A.M., von Oppen, M.: An analysis of the world market for mangoes and its importance for developing countries. In: Conference on International Agricultural Research for Development (2003)

  14. Ravindran, V., Rajaguru, A.: Nutrient contents of some unconventional poultry feed. Indian J. Anim. Sci. 55, 58–61 (1985)

    Google Scholar 

  15. Diarra, S., Usman, B., Igwebuike, J.: Replacement value of boiled mango kernel meal for maize in broiler finisher diets. J. Agric. Biol. Sci. 5(1), 47–52 (2010)

    Google Scholar 

  16. Gunstone, F.D.: Minor specialty oils. In: Fereiddon, S. (ed.) Nutraceutical and Specialty Lipids and Their Co-products, pp. 105–140. CRC Press, Boca Raton (2006)

    Google Scholar 

  17. Schieber, A., Stintzing, F., Carle, R.: By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci. Technol. 12(11), 401–413 (2001)

    Google Scholar 

  18. Beyene, G., Araya, A.: Review of mango (Mangifera indica) seed-kernel waste as a diet for poultry. J. Biol. Agric. Healthc. 5(11), 156 (2015)

    Google Scholar 

  19. Sruamsiri, S., Silman, P.: Nutritive value and nutrient digestibility of ensiled mango by-products. Maejo Int. J. Sci. Technol. 3(3), 371–378 (2009)

    Google Scholar 

  20. Dhingra, S., Kapoor, A.C.: Nutritive value of mango seed kernel. J. Sci. Food Agric. 36(8), 752–756 (1985)

    Google Scholar 

  21. Moore, L.: Mango (Mangifera indica L.). Plant Guide: USDA, National Resource Conservation Services, National Plant Data Team (2004).

  22. Emam, M., Abdel-Haleem, D.R., Salem, M.M., Abdel-Hafez, L.J.M., Latif, R.R.A., Farag, S.M., Sobeh, M., El Raey, M.A.: Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26(6), 1710 (2021)

    Google Scholar 

  23. Fischer, F., Dörfel, H.: Die polyuronsäuren der braunalgen (Kohlenhydrate der Algen I). Hoppe-Seyler s Zeitschrift für physiologische Chemie 302(1–2), 186–203 (1955)

    Google Scholar 

  24. Marrez, D.A., El Raey, M.A., El-Hagrassi, A.M., Seif, M.M., Ragab, T.I., El Negoumy, S.I., Emam, M.: Phenolic profile and antimicrobial activity of green synthesized Acalypha wilkesiana seed’s silver nanoparticles against some food borne pathogens. Biosci. Res. 14(4), 817–830 (2017)

    Google Scholar 

  25. Jayme, G., Knolle, H.: Paper chromatography of sugar mixtures on glass fiber papers. Angew. Chem.-Int. Edn. 68(7), 243–246 (1956)

    Google Scholar 

  26. Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T.: Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34(8), 828–837 (2016)

    Google Scholar 

  27. Gerberg, E.J., Barnard, D.R., Ward, R.A.: Manual for Mosquito Rearing and Experimental Techniques. American Mosquito Control Association Inc., Baltimore (1994)

    Google Scholar 

  28. WH Organization: Guidelines for Laboratory Field Testing of Mosquito Larvicides. WHO, Geneva (2005)

    Google Scholar 

  29. Amin, T.: Biochemical and physiological studies of some insect growth regulators on the cotton leafworm. Spodoptera littoralis (Boisd.). Doctoral dissertation, Ph. D. thesis, Faculty of science, Cairo University (1998)

  30. Simpson, D., Bull, D., Lindquist, D.: A semimicrotechnique for the estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57(3), 367–371 (1964)

    Google Scholar 

  31. Asperen, K.V.: A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 8(4), 401–414 (1962)

    Google Scholar 

  32. Habig, W., Pabst, M., Jarkoby, W.: Glutathione. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974)

    Google Scholar 

  33. Hansen, L., Hodgson, E.: Biochemical characteristics of insect microsomes: N-and O-demethylation. Biochem. Pharmacol. 20(7), 1569–1578 (1971)

    Google Scholar 

  34. Duncan, D.B.: Multiple range and multiple F tests. Biometrics 11(1), 1–42 (1955)

    MathSciNet  Google Scholar 

  35. Zhao, W.-H., Gao, C.-C., Ma, X.-F., Bai, X.-Y., Zhang, Y.-X.: The isolation of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose from Acer truncatum Bunge by high-speed counter-current chromatography. J. Chromatogr. B 850(1–2), 523–527 (2007)

    Google Scholar 

  36. Beretta, G., Artali, R., Caneva, E., Maffei Facino, R.: Conformation of the tridimensional structure of 1,2,3,4,6-pentagalloyl-β-d-glucopyranose (PGG) by 1H NMR, NOESY and theoretical study and membrane interaction in a simulated phospholipid bilayer: a first insight. Magn. Reson. Chem. 49(3), 132–136 (2011)

    Google Scholar 

  37. Talamond, P., Mondolot, L., Gargadennec, A., de Kochko, A., Hamon, S., Fruchier, A., Campa, C.: First report on mangiferin (C-glucosyl-xanthone) isolated from leaves of a wild coffee plant, Coffea pseudozanguebariae (Rubiaceae). Acta Botan. Gall. 155(4), 513–519 (2008)

    Google Scholar 

  38. Cho, J.-Y., Sohn, M.-J., Lee, J., Kim, W.-G.: Isolation and identification of pentagalloylglucose with broad-spectrum antibacterial activity from Rhus trichocarpa Miquel. Food Chem. 123(2), 501–506 (2010)

    Google Scholar 

  39. Gómez-Caravaca, A.M., López-Cobo, A., Verardo, V., Segura-Carretero, A., Fernández-Gutiérrez, A.: HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). Electrophoresis 37(7–8), 1072–1084 (2016)

    Google Scholar 

  40. Engels, C., Gänzle, M.G., Schieber, A.: Fast LC–MS analysis of gallotannins from mango (Mangifera indica L.) kernels and effects of methanolysis on their antibacterial activity and iron binding capacity. Food Res. Int. 45(1), 422–426 (2012)

    Google Scholar 

  41. Berardini, N., Carle, R., Schieber, A.: Characterization of gallotannins and benzophenone derivatives from mango (Mangifera indica L. cv. ‘Tommy Atkins’) peels, pulp and kernels by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18(19), 2208–2216 (2004)

    Google Scholar 

  42. Devanand, P., Rani, P.U.: Biological potency of certain plant extracts in management of two lepidopteran pests of Ricinus communis L. J. Biopest. 1(2), 170–176 (2008)

    Google Scholar 

  43. Rahuman, A.A., Bagavan, A., Kamaraj, C., Vadivelu, M., Zahir, A.A., Elango, G., Pandiyan, G.: Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 104(3), 637 (2009)

    Google Scholar 

  44. Alwala, O., Wanzala, W., Inyambukho, R., Osundwa, E., Ndiege, I.: Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J. Essent. Oil Bear. Plants 13(1), 85–96 (2010)

    Google Scholar 

  45. Jesikha, M.: Control of Musca domestica using wastes from Citrus sinensis peel and Mangifera indica seed. SIRJ-Bes 1(1), 17–26 (2014)

    Google Scholar 

  46. Kaitaniemi, P., Ruohomäki, K., Ossipov, V., Haukioja, E., Pihlaja, K.: Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116(1–2), 182–190 (1998)

    Google Scholar 

  47. Waliwitiya, R., Nicholson, R.A., Kennedy, C.J., Lowenberger, C.A.: The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 49(3), 614–623 (2012)

    Google Scholar 

  48. Sengottayan, S.-N.: Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 4, 359 (2013)

    Google Scholar 

  49. Yuan, Y., Li, L., Zhao, J., Chen, M.: Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020)

    Google Scholar 

  50. Helmy, N., Bakr, R.F., Nawwar, G.A., Helmy, O.M.: Biochemical effects of some agricultural waste extracts against Culex pipiens (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol. 2(2), 75–81 (2010)

    Google Scholar 

  51. Shoba, V.: Biochemical status and histological changes of Catharanthus roseus ethanolic leaves extract against mosquito larvae Aedes aegypti, Anopheles stephensi and Culex quinquifasciatus (Diptera: Culicidae). Int. J. Zool. Appl. Biosci. 3, 352 (2018)

    Google Scholar 

  52. Dahi, H.F., El-Sayed, Y.A., El-Barkey, N.M., Aziz, A.-E., Mona, F.: Toxicological and biochemical studies of Methylamine Avermactin, a new type of bioinsecticide against the cotton leafworm, Spodoptera littoralis (Biosd). Egypt. Acad. J. Biol. Sci. A Entomol. 2(1), 103–116 (2009)

    Google Scholar 

  53. Bullangpoti, V., Wajnberg, E., Audant, P., Feyereisen, R.: Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest. Manag. Sci. 68(9), 1255–1264 (2012)

    Google Scholar 

  54. Ebadollahi, A., Khosravi, R., Sendi, J.J., Honarmand, P., Amini, R.M.: Toxicity and physiological effects of essential oil from Agastache foeniculum (Pursh) Kuntze against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) larvae. Annu. Res. Rev. Biol. 3, 649–658 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. M. Wink, Heidelberg University for giving us the opportunity to collect LC-MS data at his lab. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: ME, MAE, MS. Acquisition of data: DRA, MS, ME. Analysis and/or interpretation of data: DRA, SMF, MS, ME. Drafting the manuscript: DRA, SMF, MS, and ME. Revising the manuscript critically for important intellectual content: DRA, MS, ME and MAE. Approval of the version of the manuscript to be published: ME, DRA, SMF, MAE and MS.

Corresponding authors

Correspondence to Doaa R. Abdel-Haleem or Mansour Sobeh.

Ethics declarations

Conflict of interest

There are no conflict of interest. None of the authors has any conflict of interest that could affect the performance of the work or the interpretation of the data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emam, M., Abdel-Haleem, D.R., Farag, S.M. et al. Larvicidal Activity of Pentagalloyl Glucose and Mangiferin Isolated from the Waste of Mango Kernel Against Culex pipiens L.. Waste Biomass Valor 13, 83–93 (2022). https://doi.org/10.1007/s12649-021-01532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01532-9

Keywords

Navigation