Skip to main content

Advertisement

Log in

Development of a High Temperature CO2 Sorbent Based on Hydrotalcite for a H2-Rich Syngas Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

To adapt hydrotalcite-based sorbents (also known as layered double hydroxides—LDHs) to high-temperature CO2 sorption compatible with tar steam reforming, the addition of CaO was investigated, maintaining the LHDs porosity and accessibility but mostly assuring the CO2 sorption stability during sorption/desorption cycles. In co-precipitation synthesis, the investigated parameters are (i) various interlayer anions with different sizes and valences (carbonate, oxalate, and stearate); (ii) various pH values; (iii) different Mg/Ca molar ratios. The characterization of these modified LDHs by TGA, XRD, N2 adsorption, SEM, sorption capacity, and sorption/desorption stability (cyclic TGA) allowed understanding the effect of the various synthesis parameters and highlighted the effect of oxalate use as the interlayer anion. After calcination of sorbent with Mg/Ca/Al ratio = 1/2/1, typical LDH sand roses were formed both with carbonate and oxalate anions: this former exhibited the highest sorption capacity and accessibility of CaO sites at 600 °C, higher than pure CaO. However, the best stability during cycles was obtained with the sorbent from oxalate and Mg/Ca/Al ratio = 1.5/1.5/1 at pH 10 for which comparable sorption results are reached. For these two samples, the observed macro-porosity was associated with the highest specific surface area and pore volume.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Yes.

References

  1. Milne, T.A., Evans, R.J., Abatzoglou, N.: Biomass gasifier “tars”: their nature, formation, and conversion, report NREL/TP-570-25357. National Renewable Energy Laboratory, Golden, CO (1998)

  2. Singh Siwal, S., Zhang, Q., Sun, C., Thakur, S., Gupta, V.K., Thakur, V.K.: Energy production from steam gasification processes and parameters that contemplate in biomass gasifier—a review. Bioresour. Technol. 297, 122481 (2020)

    Article  Google Scholar 

  3. Gao, N., Chen, C., Magdziarz, A., Zhang, L., Quan, C.: Modeling and simulation of pine sawdust gasification considering gas mixture reflux. J. Anal. Appl. Pyrolysis 155, 105094 (2021)

    Article  Google Scholar 

  4. Dawood, F., Anda, M., Shafiullah, G.M.: Hydrogen production for energy: an overview. Int. J. Hydrogen Energy 45, 3847–3869 (2020)

    Article  Google Scholar 

  5. Courson, C., Gallucci, K.: CaO-based high-temperature CO2 sorbents. In: Wang, Q. (ed.) Pre-combustion Carbon Dioxide Capture Materials, pp. 144–237. Royal Society of Chemistry, London (2018)

    Chapter  Google Scholar 

  6. Satrio, J.A., Shanks, B.H., Wheelock, T.D.: A combined catalyst and sorbent for enhancing hydrogen production from coal or biomass. Energy Fuels 21, 322–326 (2007)

    Article  Google Scholar 

  7. Wei, L., Xu, S., Liu, J., Liu, C., Liu, S.: Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy Fuels 22, 1997–2004 (2008)

    Article  Google Scholar 

  8. Acharya, B., Dutta, A., Basu, P.: An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. Int. J. Hydrogen Energy 35, 1582–1589 (2010)

    Article  Google Scholar 

  9. Luo, C., Zheng, Y., Ding, N., Wu, Q.L., Zheng, C.G.: SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture. Chin. Chem. Lett. 22, 615–618 (2011)

    Article  Google Scholar 

  10. An, H., Song, T., Shen, L., Qin, C., Yin, J., Feng, B.: Coal gasification with in situ CO2 capture by the synthetic CaO sorbent in a 1 kWth dual fluidised-bed reactor. Int. J. Hydrogen Energy 37, 14195–14202 (2012)

    Article  Google Scholar 

  11. Wang, Q., Rong, N., Fan, H., Meng, Y., Fang, M., Cheng, L., Cen, K.: Enhanced hydrogen-rich gas production from steam gasification of coal in a pressurized fluidized bed with CaO as a CO2 sorbent. Int. J. Hydrogen Energy 39, 5781–5792 (2014)

    Article  Google Scholar 

  12. Zamboni, I., Debal, M., Matt, M., Girods, P., Kiennemann, A., Rogaume, Y., Courson, C.: Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption. Environ. Sci. Pollut. Res. 23, 22253–22266 (2016)

    Article  Google Scholar 

  13. Dou, B., Wang, C., Song, Y., Chen, H., Jiang, B., Yang, M., Xu, Y.: Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: a review. Renew. Sustain. Energy Rev. 53, 536–546 (2016)

    Article  Google Scholar 

  14. Gao, N., Chen, K., Quan, C.: Development of CaO-based adsorbents loaded on charcoal for CO2 capture at high temperature. Fuel 260, 16411 (2020)

    Article  Google Scholar 

  15. Magoua Mbeugang, C.F., Li, B., Lin, D., Xie, X., Wang, S., Wang, S., Zhang, S., Huang, Y., Liu, D., Wang, Q.: Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide. Energy 228, 120659 (2021)

    Article  Google Scholar 

  16. Gao, N., Sliz, M., Quan, C., Bieniek, A., Magdziarz, A.: Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor. Renew. Energy 167, 652–661 (2021)

    Article  Google Scholar 

  17. Heuchel, M., Davies, G.M., Buss, E., Seaton, N.A.: Adsorption of carbone dioxide and methane and their mixtures on an activated carbon: simulation and experiment. Langmuir 15, 8695–8705 (1999)

    Article  Google Scholar 

  18. Gupta, H., Fan, L.S.: Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind. Eng. Chem. Res. 41, 4035–4042 (2002)

    Article  Google Scholar 

  19. Wang, Q., Luo, J., Zhong, Z., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011)

    Article  Google Scholar 

  20. Yang, J.I., Kim, J.N.: Hydrotalcite for absorption of CO2 at high temperature. Korean J. Chem. Eng. 23, 77–80 (2006)

    Article  Google Scholar 

  21. Reddy, M.K.R., Xu, Z.P., Lu, G.Q., Diniz da Costa, J.C.: Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind. Eng. Chem. Res. 45, 7504–7509 (2006)

    Article  Google Scholar 

  22. Wang, X.P., Yu, J.J., Cheng, J., Hao, Z.P., Xu, Z.P.: High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environ. Sci. Technol. 42, 614–618 (2008)

    Article  Google Scholar 

  23. Lwin, Y., Abdullah, F.: High temperature adsorption of carbon dioxide on Cu-Al hydrotalcite-derived mixed oxides: kinetics and equilibria by thermogravimetry. J. Therm. Anal. Calorim. 97, 885–889 (2009)

    Article  Google Scholar 

  24. Yancheshmeh, M.S., Radfarnia, H.R., Iliuta, M.C.: High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process. Chem. Eng. J. 283, 420–444 (2016)

    Article  Google Scholar 

  25. Liu, W.Q., Feng, B., Wu, Y.Q., Wang, G.X., Barry, J., da Costa, J.C.D.: Synthesis of sintering-resistant sorbents for CO2 capture. Environ. Sci. Technol. 44, 3093–3097 (2010)

    Article  Google Scholar 

  26. Yu, C.T., Chen, W.C.: Hydrothermal preparation of calcium-aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor. Fuel 122, 179–185 (2014)

    Article  Google Scholar 

  27. Yong, Z., Mata, V., Rodrigues, A.E.: Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTIcs) at high temperatures. Ind. Eng. Chem. Res. 40, 204–209 (2001)

    Article  Google Scholar 

  28. Wang, Q., Wu, Z.H., Tay, H.H., Chen, L.W., Liu, Y., Chang, J., Zhong, Z.Y., Luo, J.Z., Borgna, A.: High temperature adsorption of CO2 on Mg-Al hydrotalcite: effect of the charge compensating anions and the synthesis pH. Catal. Today 164, 198–203 (2011)

    Article  Google Scholar 

  29. Wang, Q., Tay, H.H., Zhong, Z., Luo, J., Borgna, A.: Synthesis of high-temperature CO2 adsorption from organo-layered double hydroxides with markedly improved CO2 capture capacity. Energy Environ. Sci. 5, 7526–7530 (2012)

    Article  Google Scholar 

  30. Reijers, H.T.J., Valster-Schiermeier, S.E., Cobden, P.D., van den Brink, R.W.: Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Ind. Eng. Chem. Res. 45, 2522–2530 (2006)

    Article  Google Scholar 

  31. Hufton, J.R., Mayorga, S., Sircar, S.: Sorption-enhanced reaction process for hydrogen production. AIChE J. 45, 248–256 (1999)

    Article  Google Scholar 

  32. Reddy, M.K.R., Xu, Z.P., Lu, G.Q., Diniz da Costa, J.C.: Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Ind. Eng. Chem. Res. 47, 2630–2635 (2008)

    Article  Google Scholar 

  33. Broda, M., Kierzkowska, A., Baudouin, D., Imtiaz, Q., Copéret, C., Müller, C.R.: Sorbent-enhanced methane reforming over a Ni−Ca-based, bifunctional catalyst sorbent. ACS Catal. 2, 1635–1646 (2012)

    Article  Google Scholar 

  34. Ibrahim, Z., Adiya, S.G., Dupont, V., Mahmud, T.: Steam reforming of shale gas with nickel and calcium looping. Fuel 237, 142–151 (2019)

    Article  Google Scholar 

  35. Chai, Y., Gao, N., Wang, M., Wu, C.: H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chem. Eng. J. 382, 122947 (2020)

    Article  Google Scholar 

  36. Dang, C., Li, Y., Yusuf, S.M., Cao, Y., Wang, H., Yu, H., Peng, F., Li, F.: Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol. Energy Environ. Sci. 11, 660–668 (2018)

    Article  Google Scholar 

  37. Ghungrud, S.A., Vaidya, P.D.: Sorption-enhanced reaction process for glycerol to hydrogen conversion over cobalt catalyst supported on promoted hydrotalcites. Int. J. Hydrogen Energy 45, 9440–9450 (2020)

    Article  Google Scholar 

  38. Han, L., Zhang, Y., Lin, K., Jia, X., Zhang, H., Zhong, Y., Wang, Q., Li, Z.: Developing a novel CaO-based sorbent for promoted CO2 capture and tar reduction. Energy Fuels 31, 5306–5317 (2017)

    Article  Google Scholar 

  39. Zamboni, I., Courson, C., Kiennemann, A.: Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming. Appl. Catal. B 203, 154–165 (2017)

    Article  Google Scholar 

  40. Simell, P.A., Leppalahti, J.K., Bredenberg, J.B.S.: Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials. Fuel 71, 211–218 (1992)

    Article  Google Scholar 

  41. Yan, X., Li, Y., Ma, X., Bian, Z., Zhao, J., Wang, Z.: CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass. Energy 192, 116664 (2020)

    Article  Google Scholar 

  42. Yan, X., Li, Y., Sun, C., Wang, Z.: Hydrogen production from absorption-enhanced steam gasification of Enteromorpha prolifera and its char using Ce-doped CaO material. Fuel 287, 119554 (2021)

    Article  Google Scholar 

  43. van Dijk, H.A.J., Walspurger, S., Cobden, P.D., van den Brink, R.W., de Vos, F.G.: Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift. Int. J. Greenh. Gas Control 5, 505–511 (2011)

    Article  Google Scholar 

  44. Rao, M.M., Reddy, B.R., Jayalakshmi, M., Jaya, V.S., Sridhar, B.: Hydrothermal synthesis of Mg-Al hydrotalcites by urea hydrolysis. Mater. Res. Bull. 40, 347–359 (2005)

    Article  Google Scholar 

  45. Xu, Z.P., Lu, G.Q.: Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chem. Mater. 17, 1055–1062 (2005)

    Article  Google Scholar 

  46. Lee, W.F., Chen, Y.C.: Effects of intercalated hydrotalcite on drug release behavior for poly(acrylic acid-co-N-isopropyl acrylamide)/intercalated hydrotalcite hydrogels. Eur. Polym. J. 42, 1634–1642 (2006)

    Article  Google Scholar 

  47. Theiss, F.L., Ayoko, G.A., Frost, R.L.: Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—a review. Appl. Surf. Sci. 383, 200–213 (2016)

    Article  Google Scholar 

  48. Wang, J., Zhang, Y., Altaf, N., O’Hare, D., Wang, Q.: Layered double hydroxides-derived intermediate-temperature CO2 absorbents. In: Wang, Q. (ed.) Pre-combustion Carbon Dioxide Capture Materials, pp. 1–60. Royal Society of Chemistry, London (2018)

    Google Scholar 

  49. Dewoolkar, K.D., Vaidya, P.D.: Tailored hydrotalcite-based hybrid materials for hydrogen production via sorption-enhanced steam reforming of ethanol. Int. J. Hydrogen Energy 41, 6094–6106 (2016)

  50. Hutson, N.D., Attwood, B.C.: High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption 14, 781–789 (2008)

    Article  Google Scholar 

  51. Qin, Q., Wang, J., Zhou, T., Zheng, Q., Huang, L., Zhang, Y., Lu, P., Ahmad, U., Louis, B., Wang, Q.: Impact of organic interlayer anions on the CO2 adsorption performance of Mg-Al layered double hydroxides derived mixed oxides. J. Energy Chem. 3, 346–353 (2017)

    Article  Google Scholar 

  52. Wang, Q., Tay, H.H., Guo, Z.H., Chen, L.W., Liu, Y., Chang, J., Zhong, Z.Y., Luo, J.Z., Borgna, A.: Morphology and composition controllable synthesis of Mg–Al–CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. Appl. Clay Sci. 55, 18–26 (2012)

    Article  Google Scholar 

  53. Andreozzi, G.B., Princivalle, F.: Kinetics of cation ordering in synthetic MgAl2O4 spinel. Am. Miner. 87, 838–844 (2002)

    Article  Google Scholar 

  54. Wang, Q., Tay, H.H., Ng, D.J.W., Chen, L., Liu, Y., Chang, J., Zhong, Z., Luo, J., Borgna, A.: The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture. ChemSusChem 3, 965–973 (2010)

    Article  Google Scholar 

  55. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the French-Italian University for the Ph.D. grant of Arno Lalaut and Thierry Romero for SEM image production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Courson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalaut, A., Courson, C. & Gallucci, K. Development of a High Temperature CO2 Sorbent Based on Hydrotalcite for a H2-Rich Syngas Production. Waste Biomass Valor 13, 117–133 (2022). https://doi.org/10.1007/s12649-021-01523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01523-w

Keywords

Navigation