Skip to main content

Advertisement

Log in

Maximising the Benefits of Enzyme Synergy in the Simultaneous Saccharification and Fermentation of Jerusalem Artichoke (Helianthus tuberosus) Tuber Residues into Ethanol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

An integrated approach for the co-production of food, feed and biofuel has the potential maximise the economic value from Jerusalem artichoke (JA). A biorefinery approach was used for extracting protein and inulin from JA tubers, and producing ethanol from the extraction residues using an optimised cocktail of enzymes.

Method

Inulin and protein products were pre-extracted from tubers, resulting in tuber residues with unextracted inulin (38%) and lignocellulosic fibres (25%). Fed-batch fermentation was used for ethanol production from the residues, using a mixture design, to optimize the cocktail of exo- and endoinulinase, Cellic® CTec3 and Pectinex Ultra-SP, to minimise the total enzyme dosage and maximise the sugar conversion and ethanol yields during simultaneous saccharification and fermentation of the residues, by exploiting synergistic action among enzymes in the cocktail.

Results

High gravity fermentation of the residues with 21% w/v solids loading, resulted in an ethanol concentration and yield of 38 g/L and 83% of the theoretical max, respectively, and a combined inulin and cellulose conversion yield of 74%. Synergistic co-operation among the enzymes improved the hydrolysis of inulin and LCFs. The enzyme cocktail demonstrated a degree of synergy that resulted in the highest sugar yield of 0.74 g/gsugars compared to yields in the range of 0.10–0.39 g/gsugars for individual enzymes. The xylose and glucan recovery yield for this optimised cocktail was 62 and 66%, respectively. Ethanol yields were improved from 37%, when using individual enzymes, to 83%, when using the enzyme cocktail.

Conclusions

Synergistic co-operation among the hydrolytic enzymes significantly improved the saccharification and fermentation efficiency of the tuber residues, in part due to optimisation of the composition of the enzyme cocktail preparation. The optimised cocktail resulted in substantial LCFs conversion without the pre-treatment of the tuber residues.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Johansson, E., Prade, T., Angelidaki, I., Svensson, S., Newson, W.R., Gunnarsson, I.B., Hovmalm, H.P.: Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16, 8997–9016 (2015)

    Article  Google Scholar 

  2. Yang, L., He, Q.S., Corscadden, K., Udeningwe, C.C.: The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 5, 77–88 (2015)

    Article  Google Scholar 

  3. Franck, A.: Technological functionality of inulin and oligofructose. Br. J. Nutr. 87, 87–91 (2002)

    Article  Google Scholar 

  4. Singh, P., Kumar, R., Sabapathy, S.N., Bawa, A.S.: Functional and edible uses of soy protein products. Compr. Rev. Food Sci. Food Saf. 7, 14–28 (2008)

    Article  Google Scholar 

  5. OECD/FAO: Biofuels, OECD-FAO Agricultural Outlook, pp. 2016–2025. OECD Publishing, Paris (2016)

    Google Scholar 

  6. Gunnarsson, I.B., Svensson, S.E., Johansson, E., Karakashev, D., Angelidaki, I.: Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind. Crops Prod. 56, 231–240 (2014)

    Article  Google Scholar 

  7. Bajpai, P.K., Bajpai, P.: Cultivation and utilization of Jerusalem artichoke for ethanol single cell protein, and high-fructose syrup production. Enzyme Microb. Technol. 13, 359–362 (1991)

    Article  Google Scholar 

  8. Izsaki, Z., Kadi, G.N.: Biomass accumulation and nutrient uptake of Jerusalem artichoke (Helianthus tuberosus L.). Am. J. Plant Sci. 4, 1629–1640 (2013)

    Article  Google Scholar 

  9. Long, X., Shao, H., Liu, L., Liu, L., Liu, Z.: Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renew. Sustain. Energy Rev. 54, 1382–1388 (2016)

    Article  Google Scholar 

  10. Aguilera, E., Guzman, G., Alfonso, A.: Greenhouse gas emissions from convectional and organic cropping systems in Spain. I. Herbaceous crops. Agron. Sustain. Dev. 35, 713–724 (2015)

    Article  Google Scholar 

  11. Naskar, B., Ghosh, S., Moulik, S.P.: Viscosity and solubility behavior of the polysaccharide inulin in water, water +dimethyl sulfoxide, and water + isopropanol media. J. Chem. Eng. Data 55, 2424–3242 (2010)

    Article  Google Scholar 

  12. Yuan, W.J., Chang, B.L., Ren, J.G., Liu, J.P., Bai, F.W., Li, Y.Y.: Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J. Appl. Microbiol. 112, 38–44 (2011)

    Article  Google Scholar 

  13. Hu, J., Arantes, V., Saddler, J.N.: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnol. Biofuels 4, 36–49 (2011)

    Article  Google Scholar 

  14. Liu, H., Zhang, Y.X., Hou, T., Chen, X., Gao, C., Han, L., Xiao, W.: Mechanical deconstruction of corn stover as an entry process to facilitate the microwave-assisted production of ethyl levulinate. Fuel. Process. Technol. 174, 53–60 (2018)

    Article  Google Scholar 

  15. Olofsson, K., Bertilsson, M., Lidén, G.: A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1, 7–21 (2008)

    Article  Google Scholar 

  16. Kádár, Z., Szengyel, Z., Réczey, Z.: Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crops Prod. 20, 103–110 (2004)

    Article  Google Scholar 

  17. Liu, K., Lin, X., Yue, J., Li, X., Fang, X., Zhu, M., Lin, J., Qua, Y., Xiao, L.: High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour. Technol. 101, 4952–4958 (2010)

    Article  Google Scholar 

  18. Zhang, L., Chen, Q., Jin, Y., Xue, H., Guan, J., Wang, Z., Zhao, H.: Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG). Fuel Process. Technol. 19, 1845–1850 (2010)

    Article  Google Scholar 

  19. Wang, F., Gao, C., Yang, C., Xu, P.: Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol. Lett. 29, 233–236 (2007)

    Article  Google Scholar 

  20. Srichuwong, S., Fujiwara, M., Wang, X., Seyama, T., Shirom, R., Arakame, M., Mukojima, N., Tokuyasu, K.: Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenergy 33, 890–898 (2009)

    Article  Google Scholar 

  21. Lim, Y., Jang, Y., Kim, K.: Production of a high concentration of ethanol from potato tuber by high gravity fermentation. Food. Sci. Biotechnol. 22, 441–448 (2013)

    Article  Google Scholar 

  22. Poonsrisawat, A., Paemanee, A., Wanlapatit, S., Piyachomkwan, K., Eurwilaichitr, L., Champredag, V.: Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production. Biotech 7, 290–390 (2011)

    Google Scholar 

  23. Yuan, W.J., Chang, B.L., Ren, J.G., Liu, J.P., Bai, F.W., Li, Y.Y.: Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. Appl. Microbiol. 112, 38–44 (2011)

    Article  Google Scholar 

  24. Bhagia, S., Ferreira, J.S., Kothari, N., Nunez, A., Liu, X., da Silva Dias, N.: Sugar yield and composition of tubers from Jerusalem Artichoke (Helianthus tuberosus ) irrigated with saline waters. Biotechnol. Bioeng. 115, 1475–1484 (2018)

    Article  Google Scholar 

  25. Song, Y., Wi, S.G., Kim, H.M., Bae, H.: Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresour. Technol. 214, 30–36 (2016)

    Article  Google Scholar 

  26. Maumela, P., van Rensburg, E., Chimphango, A., Görgens, J.: Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). J. Food Sci. Technol. 57, 775–786 (2019)

    Article  Google Scholar 

  27. van Zyl, J.M., van Rensburg, E., van Zyl, W.H., Harms, T.M., Lynd, L.R.: A kinetic model for simultaneous saccharification and fermentation of avicel with saccharomyces cerevisiae. Biotechnol. Bioeng. 108, 924–933 (2011)

    Article  Google Scholar 

  28. Plüddemann, A., van Zyl, W.: Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr. Genet. 43, 439–446 (2003)

    Article  Google Scholar 

  29. Dairy One Corporative Inc: AOAC Method 11. Dairy One Corporative Inc., Ithaca, NY (2011)

    Google Scholar 

  30. Ge, X., Zhang, W.: A shortcut to the production of high ethanol concentration from Jerusalem Artichoke tubers. Food. Technol. Biotechnol. 43, 241–246 (2005)

    Google Scholar 

  31. Mokomele, T., da Costa-Sousa, L., Balan, V., van Rensburg, E., Dale, B.E., Görgens, J.F.: Ethanol production potential from AFEXTM and steam-exploded sugarcane residues for sugarcane biorefineries. Biotechnol. Biofuels 11, 127–148 (2018)

    Article  Google Scholar 

  32. Montgomery, M.C.: Design and Analysis of Experiments, 8th edn. Wiley, New York (2013)

    Google Scholar 

  33. Yuda, B., García-Aparicio, A.P., Görgens, J.F.: Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane. Biotechnol. Biofuels. 7, 60–77 (2014)

    Article  Google Scholar 

  34. Hunag, W., Shieh, G.S., Wang, F.: Optimization of fed-batch fermentation using mixture of sugars to produce ethanol. J. Taiwan Inst. Chem. Eng. 43, 1–8 (2012)

    Article  Google Scholar 

  35. Hu, J., Arantes, V., Pribowo, A., Saddler, J.N.: The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol. Biofuels 6, 112–124 (2013)

    Article  Google Scholar 

  36. Mensink, M.A., Frijlink, H.W., Maarschalk, K., Hinrichs, W.L.J.: Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015)

    Article  Google Scholar 

  37. Liu, Y., Zhou, S., Cheng, Y., Chia, Z., Chia, Z., Liu, G.: Synergistic effect between the recombinant exo-inulinase andendo-inulinase on inulin hydrolysis. J. Mol. Catal. 128, 27–38 (2016)

    Article  Google Scholar 

  38. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693–3700 (2005)

    Article  Google Scholar 

  39. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol. Prog. 21, 816–822 (2005)

    Article  Google Scholar 

  40. Gonzalez, G.A., Takasugia, Y., Jiaa, L., Moria, Y., Nodab, S., Tanakac, T., Hirofumi, I., Kamiyaa, N.: Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme. Microb. Technol. 72, 16–24 (2015)

    Article  Google Scholar 

  41. Jalak, J., Kurasin, M., Teugjas, H., Valjamae, P.: Endo-exo synergism in cellulose hydrolysis revisited. J. Biol. Chem. 34, 28802–28815 (2012)

    Article  Google Scholar 

  42. Maumela, P., Rose, S., van Rensburg, E., Chimphango, A., Görgens, J.: Bioprocess optimisation for high cell Density endoinulinase production from recombinant Aspergillus niger. Appl. Biochem. Biotechnol. https://doi.org/10.1007/s12010-021-03592-y

Download references

Acknowledgements

The authors are grateful to the National Research Foundation for the financial support and the Glen Agricultural College, Bloemfontein, Free State Province, for kindly donating the JA tubers.

Author information

Authors and Affiliations

Authors

Contributions

Co-author

email address

Contribution

Extent of contribution (%)

Eugéne van Rensburg

eugenevrb@sun.ac.za

Experimental planning

Data interpretation

Chapter revision

10

5

20

Annie F. A. Chimphango

achimp@sun.ac.za

Data interpretation

Chapter revision

5

10

Johann F. Görgens

jgorgens@sun.ac.za

Experimental planning

Data interpretation

Chapter revision

20

10

70

Corresponding authors

Correspondence to Eugéne van Rensburg or Johann F. Görgens.

Ethics declarations

Conflict of interest

The authors declare that there have no conflicts and competing of interests.

Consent for publication

We declare that the information in this manuscript has not been published elsewhere nor is it under consideration by any other journal. Furthermore, it is the consensus of all authors to submit this manuscript for possible publication in WAVE.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maumela, P., van Rensburg, E., Chimphango, A.F.A. et al. Maximising the Benefits of Enzyme Synergy in the Simultaneous Saccharification and Fermentation of Jerusalem Artichoke (Helianthus tuberosus) Tuber Residues into Ethanol. Waste Biomass Valor 13, 535–546 (2022). https://doi.org/10.1007/s12649-021-01488-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01488-w

Keywords