Skip to main content

Valorization of Peach Palm (Bactris gasipaes Kunth) Waste: Production of Antioxidant Xylooligosaccharides

Abstract

In Brazil, the production and consumption of palm heart, especially from the Bactris gasipaes Kunth, generates a large number of lignocellulosic by-products. This study reports the obtainment of xylooligosaccharides (XOS) from xylans extracted from these residues. Xylans from peach palm waste (inner sheath and peel) were extracted using a mild alkali treatment with recovery yields of 82% and 80%, respectively. XOS were obtained through enzymatic hydrolysis employing a commercial xylanase with yields from xylan inner sheath and xylan peel of 50.1% and 48.8%, respectively. The antioxidant potential of XOS was measured employing five of the most commonly used procedures. In overall terms, the XOS from the xylans of peach palm wastes showed higher antioxidant capacity than the XOS obtained from the commercial xylans. The chemical structures of the XOS were determined by mass spectrometry (ESI–MS). The ESI–MS spectra suggest that XOS with grouped xylose or arabinose units ranging from 2 to 5 (differing by 132 Da) and as sodium adduct ions [M + Na]+ in the range of 100–1000 m/z. These results indicate that peach palm wastes can be explored to XOS production, which could be applied as natural antioxidants in functional food and pharmaceutical preparations.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Shrestha, S., Kognou, A.L.M., Zhang, J., Qin, W.: Different facets of lignocellulosic biomass including pectin and its perspectives. Waste Biomass Valorization (2020). https://doi.org/10.1007/s12649-020-01305-w

    Article  Google Scholar 

  2. Bajpai, P.: Xylan: occurrence and structure. In: Bajpai, P. (ed.) Xylanolytic Enzymes, pp. 9–18. Academic Press, New York (2014)

    Chapter  Google Scholar 

  3. Cantu-Jungles, T.M., Iacomini, M., Cipriani, T.R., Cordeiro, L.M.C.: Isolation and characterization of a xylan with industrial and biomedical applications from edible açaí berries (Euterpe oleraceae). Food Chem. 221, 1595–1597 (2016). https://doi.org/10.1016/j.foodchem.2016.10.133

    Article  Google Scholar 

  4. Bolanho, B.C., Danesi, E.D.G., Beléia, A.D.P.: Carbohydrate composition of peach palm (Bactris gasipaes Kunth) by-products flours. Carbohydr. Polym. 124, 196–200 (2015). https://doi.org/10.1016/j.carbpol.2015.02.021

    Article  Google Scholar 

  5. de Sousa, E.P., Soares, N.S., Cordeiro, S.A., da Silva, M.L.: Competitividade da produção de palmito de pupunha no Espírito Santo e em São Paulo. Rev. Econ. e Sociol. Rural. 49, 157–179 (2011). https://doi.org/10.1590/S0103-20032011000100007

    Article  Google Scholar 

  6. Schmidt, P., Rossi Junior, P., de Toledo, L.M., Nussio, L.G., de Albuquerque, D.S., Meduri, B.: Perdas fermentativas e composição bromatológica da entrecasca de palmito pupunha ensilada com aditivos químicos. Rev. Bras. Zootec. 39, 262–267 (2010). https://doi.org/10.1590/s1516-35982010000200005

    Article  Google Scholar 

  7. Franco, T.S., Potulski, D.C., Viana, L.C., Forville, E., de Andrade, A.S., de Muniz, G.I.B.: Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr. Polym. 218, 8–19 (2019). https://doi.org/10.1016/j.carbpol.2019.04.035

    Article  Google Scholar 

  8. Ordóñez-Santos, L.E., Pinzón-Zarate, L.X., González-Salcedo, L.O.: Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrason. Sonochem. 27, 560–566 (2015). https://doi.org/10.1016/j.ultsonch.2015.04.010

    Article  Google Scholar 

  9. Matos, K.A.N., Lima, D.P., Barbosa, A.P.P., Mercadante, A.Z., Chisté, R.C.: Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chem. 272, 216–221 (2019). https://doi.org/10.1016/j.foodchem.2018.08.053

    Article  Google Scholar 

  10. Bolanho, B.C., Danesi, E.D.G., del Beléia, A.P.: Characterization of flours made from peach palm (Bactris gasipaes Kunth) by-products as a new food ingredient. J. Food Nutr. Res. 53, 51–59 (2014)

    Google Scholar 

  11. Ubando, A.T., Felix, C.B., Chen, W.-H.: Biorefineries in circular bioeconomy: a comprehensive review. Bioresour. Technol. 299, 122585 (2020). https://doi.org/10.1016/j.biortech.2019.122585

    Article  Google Scholar 

  12. Poletto, P., Pereira, G.N., Monteiro, C.R.M., Pereira, M.A.F., Bordignon, S.E., de Oliveira, D.: Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem. 91, 352–363 (2020). https://doi.org/10.1016/j.procbio.2020.01.005

    Article  Google Scholar 

  13. Zhou, X., Zhao, J., Zhang, X., Xu, Y.: An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Bioresour. Technol. 289, 121755 (2019). https://doi.org/10.1016/j.biortech.2019.121755

    Article  Google Scholar 

  14. Meyer, T.S.M., Miguel, A.S.M., Fernández, D.E.R., Ortiz, G.M.D.: Biotechnological Production of Oligosaccharides—Applications in the Food Industry. In: Eissa, A.H.A. (ed.) Food Production and Industry, pp. 25–78. InTech (2015)

    Google Scholar 

  15. Carvalho, A.F.A., de Neto, P.O., da Silva, D.F., Pastore, G.M.: Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int. 51, 75–85 (2013). https://doi.org/10.1016/j.foodres.2012.11.021

    Article  Google Scholar 

  16. Huang, C., Wang, X., Laing, X., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q.: A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels. 12, 189–202 (2019). https://doi.org/10.1186/s13068-019-1527-3

    Article  Google Scholar 

  17. Akpinar, O., Erdogan, K., Bostanci, S.: Enzymatic production of Xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009). https://doi.org/10.1016/j.fbp.2008.09.002

    Article  Google Scholar 

  18. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 35–83 (1991)

    Google Scholar 

  19. Samanta, A.K., Senani, S., Kolte, A.P., Sridhar, M., Sampath, K.T., Jayapal, N., Devi, A.: Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process. 90, 466–474 (2012). https://doi.org/10.1016/j.fbp.2011.11.001

    Article  Google Scholar 

  20. Kiran, E.U., Akpinar, O., Bakir, U.: Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. Food Bioprod. Process. 91, 565–574 (2013). https://doi.org/10.1016/j.fbp.2012.12.002

    Article  Google Scholar 

  21. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  22. Valls, C., Pastor, F.I.J., Vidal, T., Roncero, M.B., Díaz, P., Valenzuela, S.V.: Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydr. Polym. 194, 43–50 (2018). https://doi.org/10.1016/j.carbpol.2018.04.028

    Article  Google Scholar 

  23. Singleton, V., Rossi, J.A.: Colorimetry of total phenolics with phosphobolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 14, 144–158 (1965)

    Google Scholar 

  24. Pulido, R., Bravo, L., Saura-calixto, F.: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402 (2000)

    Article  Google Scholar 

  25. Dávalos, A., Gómez-Cordovés, C., Bartolomé, B.: Extending applicability of the oxygen radical absorbance capacity (ORAC − fluorescein) assay. J. Agric. Food Chem. 52, 48–54 (2004)

    Article  Google Scholar 

  26. Mu, H., Zhang, A., Zhang, W., Cui, G., Wang, S., Duan, J.: Antioxidative properties of crude polysaccharides from Inonotus obliquus. Int. J. Mol. Sci. 13, 9194–9206 (2012). https://doi.org/10.3390/ijms13079194

    Article  Google Scholar 

  27. Galili, S., Hovav, R.: Determination of polyphenols, flavonoids, and antioxidant capacity in dry seeds. In: Watson, R.R. (ed.) Polyphenols in Plants: Isolation, Purification and Extract Preparation, pp. 305–323. Academic Press, Bet Dagan (2014)

    Chapter  Google Scholar 

  28. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-zevallos, L., Byrne, D.H.: Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675 (2006). https://doi.org/10.1016/j.jfca.2006.01.003

    Article  Google Scholar 

  29. Subhedar, P.B., Gogate, P.R.: Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason. Sonochem. 21, 216–225 (2014). https://doi.org/10.1016/j.ultsonch.2013.08.001

    Article  Google Scholar 

  30. Jayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production. Ind. Crop. Prod. 42, 14–24 (2013)

    Article  Google Scholar 

  31. Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Mishra, S., Prasad, C.S., Suresh, K.P.: Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production. Appl Biochem Biotechnol. 169, 2392–2404 (2013). https://doi.org/10.1007/s12010-013-0151-0

    Article  Google Scholar 

  32. Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour. Technol. 112, 199–205 (2012). https://doi.org/10.1016/j.biortech.2012.02.036

    Article  Google Scholar 

  33. Jnawali, P., Kumar, V., Tanwar, B., Hirdyani, H., Gupta, P.: Enzymatic production of xylooligosaccharides from brown cocconut husk treated with sodium hydroxide. Waste Biomass Valorization. 9, 1757–1766 (2018). https://doi.org/10.1007/s12649-017-9963-4

    Article  Google Scholar 

  34. Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 35, 298–307 (2011). https://doi.org/10.1016/j.biombioe.2010.08.067

    Article  Google Scholar 

  35. Buslov, D.K., Kaputski, F.N., Sushko, N.I., Torgashev, V.I., Solov’eva, L. V., Tsarenkov, V.M., Zubets, O. V., Larchenko, L. V.: Infrared spectroscopic analysis of the structure of xylans. J. Appl. Spectrosc. 76, 801–805 (2009)

    Article  Google Scholar 

  36. Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G., Cheng, G.: Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresour. Technol. 153, 379–382 (2014). https://doi.org/10.1016/j.biortech.2013.12.004

    Article  Google Scholar 

  37. Sharma, K., Morla, S., Khaire, K.C., Thakur, A., Moholkar, V.S., Kumar, S., Goyal, A.: Extraction, characterization of xylan from Azadirachta indica (neem) sawdust and production of antiproliferative xylooligosaccharides. Int. J. Biol. Macromol. 163, 1897–1907 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.086

    Article  Google Scholar 

  38. Banerjee, S., Patti, A.F., Ranganathan, V., Arora, A.: Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod. Process. 117, 38–50 (2019). https://doi.org/10.1016/j.fbp.2019.06.012

    Article  Google Scholar 

  39. Bian, J., Peng, F., Peng, X.P., Peng, P., Xu, F., Sun, R.C.: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 127, 236–241 (2013). https://doi.org/10.1016/j.biortech.2012.09.112

    Article  Google Scholar 

  40. Ruzene, D.S., Silva, D.P., Vicente, A.A., Gonçalves, A.R., Teixeira, J.A.: An alternative application to the Portuguese agro-industrial residue: wheat straw. Appl. Biochem. Biotechnol. 147, 85–96 (2008). https://doi.org/10.1007/s12010-007-8066-2

    Article  Google Scholar 

  41. Wu, Q., Fan, G., Yu, T., Sun, B., Tang, H., Teng, C., Yang, R., Li, X.: Biochemical characteristics of the mutant xylanase T-XynC (122)C(166) and production of xylooligosaccharides from corncobs. Ind. Crop. Prod. 142, 1–13 (2019). https://doi.org/10.1016/j.indcrop.2019.111848

    Article  Google Scholar 

  42. Veenashri, B.R., Muralikrishna, G.: In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans—a comparative study. Food Chem. 126, 1475–1481 (2011). https://doi.org/10.1016/j.foodchem.2010.11.163

    Article  Google Scholar 

  43. Rashad, M.M., Mahmoud, A.E., Nooman, M.U., Mahmoud, H.A., El-Torky, A.E.D.M.M., Keshta, A.T.: Production of antioxidant xylooligosaccharides from lignocellulosic materials using Bacillus amyloliquifaciens NRRL B-14393 xylanase. J. Appl. Pharm. Sci. 6, 30–36 (2016). https://doi.org/10.7324/JAPS.2016.60606

    Article  Google Scholar 

  44. Shi, P., Chen, X., Meng, K., Huang, H., Bai, Y., Luo, H., Yang, P., Yao, B.: Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation. Appl. Environ. Microbiol. 79, 1990–1995 (2013). https://doi.org/10.1128/AEM.03276-12

    Article  Google Scholar 

  45. Corradini, F.A.S., Baldez, T.O., Milessi, T.S.S., Tardioli, P.W., Ferreira, A.G., de Giordano, R.C., de Giordano, R.L.C.: Eucalyptus xylan: An in-house-produced substrate for xylanase evaluation to substitute birchwood xylan. Carbohydr. Polym. 197, 167–173 (2018). https://doi.org/10.1016/j.carbpol.2018.05.088

    Article  Google Scholar 

  46. Vieira, T.F., Corrêa, R.C.G., Peralta, R.A., Peralta-Muniz-Moreira, R.F., Bracht, A., Peralta, R.M.: An overview of structural aspects and health beneficial effects of antioxidant oligosaccharides. Curr. Pharm. Des. 26, 1759–1777 (2020). https://doi.org/10.2174/1381612824666180517120642

    Article  Google Scholar 

  47. Comar, J.F., Sá-Nakanishi, A.B., Oliveira, A.L., Wendt, M.M.N., Beresani-Amado, C.A., Ishii-Iwamoto, E.L., Peralta, R.M.: Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Rad. Biol. Med. 58, 144–153 (2013). https://doi.org/10.1016/j.freeradbiomed.2012.12.003

    Article  Google Scholar 

  48. Huang, C., Tang, S., Zhang, W., Tao, Y., Lai, C., Li, X., Yong, Q.: Unveiling the structural properties of lignin-carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. CS Sustain. Chem. Eng. 6, 12522–12531 (2018). https://doi.org/10.1021/acssuschemeng.8b03262

    Article  Google Scholar 

  49. Zheng, L., Yu, P., Zhang, Y., Wang, P., Yan, W., Guo, B., Huang, C., Jiang, Q.: Evaluating the bio-application of biomacromolecule of lignin carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int. J. Biol. Macromol. 176, 13–25 (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.103

    Article  Google Scholar 

  50. Pei, W., Chen, Z.S., Chan, H.Y.E., Zheng, L., Liang, C., Huang, C.: Isolation and identification of a novel anti-protein aggregation acivity of lignin-carbohydrate complex from Chionanthus retusus leaves. Frontiers Bioeng. Biotechnol. 8, 573991 (2021). https://doi.org/10.3389/fbioe.2020.573991

    Article  Google Scholar 

  51. Mandelli, F., Brenelli, L.B., Almeida, R.F., Goldbeck, R., Wolf, L.D., Hoffmam, Z.B., Ruller, R., Rocha, G.J.M., Mercadante, A.Z., Squina, F.M.: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis. Ind. Crops Prod. 52, 770–775 (2014). https://doi.org/10.1016/j.indcrop.2013.12.005

    Article  Google Scholar 

  52. Zhou, T., Xue, Y., Ren, F., Dong, Y.: Antioxidant activity of xylooligosaccharides prepared from Thermotoga maritima using recombinant enzyme cocktail of β-xylanase and α-glucuronidase. J. Carbohydr. Chem. 37, 210–224 (2018). https://doi.org/10.1080/07328303.2018.1455843

    Article  Google Scholar 

  53. Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q.: A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels. 12, 1–13 (2019). https://doi.org/10.1186/s13068-019-1527-3

    Article  Google Scholar 

  54. Jagtap, S., Deshmukh, R.A., Menon, S., Das, S.: Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour. Technol. 245, 283–288 (2017). https://doi.org/10.1016/j.biortech.2017.08.174

    Article  Google Scholar 

  55. Reis, A., Coimbra, M.A., Domingues, P., Ferrer-Correia, A.J., Rosário, M., Domingues, M.: Structural characterisation of underivatised olive pulp xylo-oligosaccharides by mass spectrometry using matrix-assisted laser desorption/ionisation and electrospray ionisation. Rapid Commun. Mass Spectrom. 16, 2124–2132 (2002). https://doi.org/10.1002/rcm.839

    Article  Google Scholar 

  56. Manisseri, C., Gudipati, M.: Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides. LWT Food Sci. Technol. 43, 421–430 (2010). https://doi.org/10.1016/j.lwt.2009.09.004

    Article  Google Scholar 

  57. Palaniappan, A., Balasubramaniam, V.G., Antony, U.: Prebiotic potential of xylooligosaccharides derived from finger millet seed coat. Food Biotechnol. 31, 264–280 (2017). https://doi.org/10.1080/08905436.2017.1369433

    Article  Google Scholar 

  58. Arumugam, N., Biely, P., Puchart, V., Shegro, A., Mukherjee, K.D., Singh, S., Pillai, S.: Xylan from bambara and cowpea biomass and their structural elucidation. Int. J. Biol. Macromol. 132, 987–993 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.030

    Article  Google Scholar 

  59. Dus, J.Ø., Gotfredsen, C.H., Bock, K.: Carboydrate structural determination by NMR spectroscopy: moderns methods and limitations. Chem. Rev. 100, 4589–4614 (2000). https://doi.org/10.1021/cr990302n

    Article  Google Scholar 

  60. Dong, H., Zheng, L., Yu, P., Jiang, Q., Wu, Y., Yuang, C., Yin, B.: Characterization and application of lignin−carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in Vitro and in vivo reactive oxygen species. ACS Sustain. Chem. Eng. 8, 256–266 (2020). https://doi.org/10.1021/acssuschemeng.9b05290

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks EMBRAPA-FLORESTAS for supplying the palm heart wastes.

Funding

This work was supported by the National Council of Scientific and Technological Development (CNPq, Proc. 404898/2016-5 and 304406/2019-8) and by the Araucaria Foundation (Proc. 03/2019). Author T.F. Vieira is a graduate scholarship fellow of the Coordination for the Improvement of Higher Education Personnel (CAPES); R.C.G. Corrêa is a research grant recipient of Cesumar Institute of Science Technology and Innovation (ICETI).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and data curation; TFV; RCGC. Formal analysis; TFV; JAAG; Funding acquisition; RMP; Investigation; Methodology; TFV; JAAG; Project administration; RMP; Supervision; AB; RMP; Validation and Visualization; RCGC; RAP; RFPMM; Writing—original draft; RFPMM, RAP, EAdeL, CVH; Writing—review & editing. AB; RMP.

Corresponding author

Correspondence to Rosane M. Peralta.

Ethics declarations

Conflict of interest

There are no interest conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 404 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vieira, T.F., Corrêa, R.C.G., de Fatima Peralta Muniz Moreira , R. et al. Valorization of Peach Palm (Bactris gasipaes Kunth) Waste: Production of Antioxidant Xylooligosaccharides. Waste Biomass Valor 12, 6727–6740 (2021). https://doi.org/10.1007/s12649-021-01457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01457-3

Keywords

  • Peach palm wastes
  • Xylan extraction
  • Xylanase
  • Xylooligosaccharide
  • Antioxidant