Skip to main content

Advertisement

Log in

Utilization of Steam-Treated and Milling-Treated Lignin from Moso Bamboo as Curing Agent of Epoxy Resin

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Low-molecular weight lignin was used as a curing agent to synthesize a bio-based cured epoxy resin. The low-molecular weight lignin was extracted from moso bamboo using steam treatment at 10–40 atm for 5 min followed by milling treatment for 10 s and then water and acetone extractions. The number and weight average molecular weight of low-molecular weight lignin, i.e. acetone soluble component, were 554–698 and 1460–3240, respectively. Furthermore, the hydroxyl equivalent of low-molecular weight lignin were 111–169 g-lignin/eq. The lignin-cured epoxy resin was made from EP828 (a commercial diglycidyl ether bisphenol A epoxy resin) with the low-molecular weight lignin as a curing agent. The decomposition temperature at 5% weight loss (Td5) of lignin-cured epoxy resins were 298–327 °C and the maximum value, i.e. 327 °C, was obtained using a low-molecular weight lignin at 30 atm. Though Td5 varied with the steam pressure, all values satisfied the thermal stability property required for soldering resistance in the electronic substrate field, i.e. beyond 250 °C. The tensile strengths of lignin-cured epoxy resins were 44–59 MPa and these values satisfied the tensile strength of commercial cured epoxy resins, i.e. beyond 27 MPa.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kamm, B., Kamm, M.: Principles of biorefineries. Appl. Microbiol. Biotechnol. 64, 137–145 (2004)

    Article  Google Scholar 

  2. Ellis, B.: Introduction to the chemistry, synthesis, manufacture and characterization of epoxy resins. In: Ellis, B. (ed.) Chemistry and Technology of Epoxy Resins, pp. 1–36. Springer, Michigan (1993)

    Chapter  Google Scholar 

  3. Markaverich, B., Webb, B., Densmore, C., Gregory, R.: Effects of coumestrol on estrogen receptor function and uterine growth in ovariectomized rats. Environ. Health. Perspect. 103, 574–581 (1995)

    Article  Google Scholar 

  4. Raquez, J., Deleglise, M., Lacrampe, M., Krawczak, P.: Thermosetting (bio)materials derived from renewable resources: a critical review. Prog. Polym. Sci. 35, 487–509 (2010)

    Article  Google Scholar 

  5. Crivello, J.V., Narayan, R., Sternstein, S.S.: Fabrication and mechanical characterization of glass fiber reinforced UV-cured composites from epoxidized vegetable oils. J. Appl. Polym. Sci. 64, 2073–2087 (1997)

    Article  Google Scholar 

  6. Vlcek, T., Petrovic, Z.S.: Optimization of the chemoenzymatic epoxidation of soybean oil. J. Amer. Oil Chem. Soc. 83, 247–252 (2006)

    Article  Google Scholar 

  7. Zeleke, T.D., Ayana, Y.M.: Epoxidation of vernonia oil in acidic ion exchange resin. Am. J. Appl. Chem. 5, 1–6 (2017)

    Article  Google Scholar 

  8. Goud, V.V., Patwardhan, A.V., Dinda, S., Pradhan, N.C.: Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. Eur. J. Lipid Sci. Technol. 109, 575–584 (2007)

    Article  Google Scholar 

  9. Ma, S., Liu, X., Jiang, Y., Tang, Z., Zhang, C., Zhu, J.: Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem. 15, 245–254 (2013)

    Article  Google Scholar 

  10. Benyahya, S., Aouf, C., Caillol, S., Boutevin, B., Pascault, J.P., Fulcrand, H.: Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind. Crop. Prod. 53, 296–307 (2014)

    Article  Google Scholar 

  11. Sasaki, C., Wanaka, M., Takagi, H., Tamura, S., Asada, C., Nakamura, Y.: Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind. Crops Prod. 43, 757–761 (2013)

    Article  Google Scholar 

  12. Kishi, H., Akamatsu, Y., Noguchi, M., Fujita, A., Matsuda, S., Nishida, H.: Synthesis of epoxy resins from alcohol-liquefied wood and the mechanical properties of the cured resins. J. Appl. Polym. Sci. 120, 745–761 (2011)

    Article  Google Scholar 

  13. Asada, C., Sasaki, C., Suzuki, A., Nakamura, Y.: Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valori. 9, 2423–2432 (2018)

    Article  Google Scholar 

  14. Jablonskis, A., Arshanitsa, A., Arnautov, A., Telysheva, G., Evtuguin, D.: Evaluation of Ligno BoostTM softwood kraft lignin epoxidation as an approach for its application in cured epoxy resins. Ind. Crops Prod. 112, 225–235 (2018)

    Article  Google Scholar 

  15. Nagatani, M., Tsurumaki, A., Takamatsu, K., Saito, H., Nakamura, N., Ohno, H.: Preparation of epoxy resins derived from lignin solubilized in tetrabutylphosphonium hydroxide aqueous solutions. Int. J. Biol. Macromol. 132, 585–591 (2019)

    Article  Google Scholar 

  16. Nisha, S.S., Nikzad, M., Kobaisi, M.A., Truong, V.K., Sbarski, I.: The role of ionic-liquid extracted lignin micro/nanoparticles for functionalisation of an epoxy-based composite matrix. Compos. Sci. Technol. 174, 11–19 (2019)

    Article  Google Scholar 

  17. Ortiz, P., Wiekamp, M., Vendamme, R., Eevers, W.: Bio-based epoxy resins from biorefinery by-products. BioResources 14, 3200–3209 (2019)

    Article  Google Scholar 

  18. Ferdosian, F., Yuan, Z., Anderson, M., Xu, C.C.: Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins. J. Anal. Appl. Pyrolysis 119, 124–132 (2016)

    Article  Google Scholar 

  19. Asada, C., Kita, A., Sasaki, C., Nakamura, Y.: Ethanol production from disposable aspen chopsticks using delignification. Carbohydr. Polym. 85, 196–200 (2011)

    Article  Google Scholar 

  20. Bauer, A., Lizasoain, J., Theuretzbacher, F., Agger, J.W., Rincon, M., Menardo, S., Saylor, M.K., Enguidanos, R., Nielsen, P.J., Potthast, A., Zweckmair, T., Gronauer, A., Horn, S.J.: Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresour. Technol. 166, 403–410 (2014)

    Article  Google Scholar 

  21. Garmakhany, A.D., Kashaninejad, M., Aalami, M., Maghsoudlou, Y., Khomieri, M., Tabil, L.G.: Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment. J. Sci. Food Agric. 94, 1607–1613 (2013)

    Article  Google Scholar 

  22. Shevchenko, S.M., Chang, K., Robinson, J., Saddler, J.N.: Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicelluloses component after steam explosion of softwood chips. Bioresour. Technol. 72, 207–211 (2000)

    Article  Google Scholar 

  23. Alvira, P., Tomas-Pejo, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101, 4851–4861 (2010)

    Article  Google Scholar 

  24. Chen, H., Qiu, W.: Key technologies for bioethanol production from lignocellulose. Biotechnol. Adv. 28, 556–562 (2010)

    Article  Google Scholar 

  25. Liu, C.G., Liu, L.Y., Zi, L.H., Zhao, X.Q., Xu, Y.H., Bai, F.W.: Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover. Bioresour. Technol. 166, 368–372 (2014)

    Article  Google Scholar 

  26. Yu, Z., Zhang, B., Yu, F., Xu, G., Song, A.: A real explosion: The requirement of steam explosion pretreatment. Bioresour. Technol. 121, 335–341 (2012)

    Article  Google Scholar 

  27. He, M.X., Wang, J.L., Qin, H., Shui, Z.X., Zhu, Z.X., Wu, B., Tan, F.R., Pan, K., Hu, Q.C., Dai, L.C., Wang, W.G., Tang, X.Y., Hu, G.Q.: Bamboo: A new source of carbohydrate for biorefinery. Carbohydr. Polym. 111, 645–654 (2014)

    Article  Google Scholar 

  28. Suzuki, A., Sasaki, C., Asada, C., Nakamura, Y.: Production of cellulose nanofibers from Aspen and Bode chopsticks using a high temperature and high pressure steam treatment with milling. Carbohydr. Polym. 194, 303–310 (2018)

    Article  Google Scholar 

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure (LAP): Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory, Golden (2011)

    Google Scholar 

  30. Asada, C., Basnet, S., Otsuka, T., Sasaki, C., Nakamura, Y.: Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int. J. Biol. Macromol. 74, 413–419 (2015)

    Article  Google Scholar 

  31. Palmqvist, E., Hahn-Hagerdal, B.: Fermentation of lignocellulosic hydrolysates II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74, 25–33 (2000)

    Article  Google Scholar 

  32. Wang, P., Fu, Y., Shao, Z., Zhang, F., Qin, M.: Structural changes to aspen wood lignin during autohydrolysis pretreatment. BioResources 11, 4086–4103 (2016)

    Article  Google Scholar 

  33. Maniet, G., Schmetz, Q., Jacquet, N., Temmerman, M., Gofflot, S., Richel, A.: Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Ind. Crops Prod. 99, 79–85 (2017)

    Article  Google Scholar 

  34. Chua, M.G.S., Wayman, M.: Characterization of autohydrolysis aspen (P tremuloides) lignins part 1: Composition and molecular weight distribution of extracted autohydrolysis lignin. Can. J. Chem. 57, 1141–1149 (1979)

    Article  Google Scholar 

  35. Asada, C., Nakamura, Y., Kobayashi, F.: Chemical characteristics and ethanol fermentation of the cellulose component in autohydrolyzed bagasse. Biotechnol. Biopro. Eng. 10, 346–352 (2005)

    Article  Google Scholar 

  36. Basnet, S., Otsuka, M., Sasaki, C., Asada, C., Nakamura, Y.: Functionalization of the active Ingredients of Japanese green tea (Camellia sinensis) for the synthesis of bio-based epoxy resin. Ind. Crops Prod. 73, 63–72 (2015)

    Article  Google Scholar 

  37. Abdul, K.H.P.S., Marliana, M.M., Alshammari, T.: Material properties of epoxy-reinforced biocomposites with lignin from empty fruit bunch as curing agent. BioResources 6, 5206–5223 (2011)

    Google Scholar 

  38. Yin, Q., Yang, W., Sun, C., Di, M.: Preparation and properties of lignin-epoxy resin composite. BioResources 7, 5737–5748 (2012)

    Article  Google Scholar 

  39. Qin, J., Woloctt, M., Zhang, J.: Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application. ACS Sustain. Chem. Eng. 2, 188–193 (2013)

    Article  Google Scholar 

  40. Kawamoto, H., Horigoshi, S., Saka, S.: Pyrolysis reactions of various lignin model dimers. J. Wood Chem. Technol. 27, 121–133 (2007)

    Google Scholar 

  41. Krevelen, D.W.V.: Some basic aspects of flame resistance of polymeric materials. Polymer 16, 615–620 (1975)

    Article  Google Scholar 

  42. Asada, C., Sholahuddin, Nakamura, Y.: Chapter 9: Lignin as a Coating and Curing Agent on Biodegradable Epoxy Resins, Reactive and Functional Polymers Volume One. In: Gutiérrez, T.J. (eds.), Springer Nature Switzerland AG, pp.195–206 (2020)

  43. Francis, B.: 22 Cure Kinetics of Epoxy/Thermoplastic Blends, Handbook of Epoxy Blends. In: Parameswaranpillai, J., Hameed, N., Pinonteck, J., Woo, E.M. (eds.) Springer Nature International Publishing AG, pp.649–674 (2017)

  44. Deeraj, B.D.S., Harikrishnan, R., Jayan, J.S., Saritha, A., Joseph, K.: Enhanced visco-elastic and rheological behavior of epoxy composites reinforced with polyimide nanofiber. Nano-Struct. Nano-Objects 21, 100421 (2020)

    Article  Google Scholar 

  45. Reddy, K.R., El-Zein, A., Airey, D.W., Alonso-Marroquin, F., Schubel, P., Manalo, A.: Self-healing polymers: synthesis methods and applications. Nano-Struct. Nano-Objects 23, 100500 (2020)

    Article  Google Scholar 

  46. Basheer, B.V., George, J.J., Siengchin, S., Parameswaranpillai, J.: Polymer grafted carbon nanotubes-Synthesis, properties, and applications: a review. Nano-Struct. Nano-Objects 22, 100429 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports provided by a Grant-in-Aid for Young Scientists (A) (Grant No. 17H04717) and a Grant-in-Aid for Scientific Research (A) (Grant No. 20H00664) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Asada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asada, C., Honjo, K. & Nakamura, Y. Utilization of Steam-Treated and Milling-Treated Lignin from Moso Bamboo as Curing Agent of Epoxy Resin. Waste Biomass Valor 12, 6261–6272 (2021). https://doi.org/10.1007/s12649-021-01444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01444-8

Keywords

Navigation