Malinconico, M., Immirzi, B., Santagata, G., Schettini, E., Vox, G., Mugnozza, G.S.: An overview on innovative biodegradable materials for agricultural applications. In: Moeller, H.W. (ed.) Progress in Polymer Degradation and Stability Research, pp. 69–114. Nova Science, New York (2008)
Google Scholar
Ghimire, S., Hayes, D., Cowan, J.S., Inglis, D., DeVetter, L.W., Miles, C.A.: Biodegradable Plastic Mulch and Suitability for Sustainable and Organic Agriculture. Washington State University Extension, Pullman, Washington (2018)
Google Scholar
Sander, M.: Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions. Environ. Sci. Technol. 53, 2304–2315 (2019). https://doi.org/10.1021/acs.est.8b05208
Article
Google Scholar
Ramos, L., Berenstein, G., Hughes, E.A., Zalts, A., Montserrat, J.M.: Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 523, 74–81 (2015). https://doi.org/10.1016/J.SCITOTENV.2015.03.142
Article
Google Scholar
Food and Agriculture Organization of the United Nations, (FAO): Food and Agriculture: Driving action across the 2030 Agenda for Sustainable Development. (2017)
Dmytryk, A., Chojnacka, K.: Algae as fertilizers, biostimulants, and regulators of plant growth. In: Chojnacka, K., Wieczorek, P., Schroeder, G., Michalak, I. (eds.) Algae Biomass: Characteristics and Applications, pp. 115–122. Springer International Publishing, Cham (2018)
Chapter
Google Scholar
Battacharyya, D., Babgohari, M.Z., Rathor, P., Prithiviraj, B.: Seaweed extracts as biostimulants in horticulture. Sci. Hortic. (Amsterdam) 196, 39–48 (2015). https://doi.org/10.1016/J.SCIENTA.2015.09.012
Article
Google Scholar
Manivasagan, P., Oh, J.: Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol. 82, 315–327 (2016). https://doi.org/10.1016/j.ijbiomac.2015.10.081
Article
Google Scholar
Salcedo, M.F., Colman, S.L., Mansilla, A.Y., Martínez, M.A., Fiol, D.F., Alvarez, V.A., Casalongué, C.A.: Amelioration of tomato plants cultivated in organic matter impoverished soil by supplementation with Undaria pinnatifida. Algal Res. 46, 101785 (2020). https://doi.org/10.1016/j.algal.2019.101785
Article
Google Scholar
Liu, H., Zhang, Y.-H., Yin, H., Wang, W.-X., Zhao, X.-M., Du, Y.-G.: Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol. Biochem. 62, 33–40 (2013). https://doi.org/10.1016/J.PLAPHY.2012.10.012
Article
Google Scholar
Zhang, Y., Yin, H., Zhao, X., Wang, W., Du, Y., He, A., Sun, K.: The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr. Polym. 113, 446–454 (2014). https://doi.org/10.1016/j.carbpol.2014.06.079
Article
Google Scholar
Gómez-Ordóñez, E., Rupérez, P.: FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 25, 1514–1520 (2011). https://doi.org/10.1016/J.FOODHYD.2011.02.009
Article
Google Scholar
da Silva, T.L., Vidart, J.M.M., da Silva, M.G.C., Gimenes, M.L., Vieira, M.G.A.: Alginate and Sericin: environmental and pharmaceutical applications. In: Shalaby, E.A. (ed.) Biological Activities and Application of Marine Polysaccharides, pp. 57–85. InTechOpen, London (2017)
Google Scholar
Liling, G., Di, Z., Jiachao, X., Xin, G., Xiaoting, F., Qing, Z.: Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydr. Polym. 136, 259–265 (2016). https://doi.org/10.1016/J.CARBPOL.2015.09.034
Article
Google Scholar
Immirzi, B., Santagata, G., Vox, G., Schettini, E.: Preparation, characterization and field-testing of a biodegradable sodium alginate-based spray mulch. Biosyst. Eng. 102, 461–472 (2009). https://doi.org/10.1016/J.BIOSYSTEMSENG.2008.12.008
Article
Google Scholar
Schettini, E., Vox, G., De Lucia, B.: Effects of the radiometric properties of innovative biodegradable mulching materials on snapdragon cultivation. Sci. Hortic. (Amsterdam) 112, 456–461 (2007). https://doi.org/10.1016/J.SCIENTA.2007.01.013
Article
Google Scholar
Sakugawa, K., Ikeda, A., Takemura, A., Ono, H.: Simplified method for estimation of composition of alginates by FTIR. J. Appl. Polym. Sci. 93, 1372–1377 (2004). https://doi.org/10.1002/app.20589
Article
Google Scholar
Terrafertil Multipro Hortícola. https://terrafertil.com/productos_profesionales/sustratos_multipro.html. Accessed 10 Feb 2021
Patrignani, A., Ochsner, T.E.: Canopeo: a powerful new tool for measuring fractional green canopy cover. Agron. J. 107, 2312–2320 (2015). https://doi.org/10.2134/agronj15.0150
Article
Google Scholar
Val Falcón, J., Heras Cobo, L., Monge Pacheco, E.: Nuevas ecuaciones para la determinación de pigmentos fotosintéticos en acetona. An. Estac. Exp. Aula Dei. 17(3/4), 231–238 (1985). https://digital.csic.es/handle/10261/13836
Giusti, M.M., Wrolstad, R.E.: Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. (2001). https://doi.org/10.1002/0471142913.faf0102s00
Article
Google Scholar
Ma, Z., Ma, Y., Qin, L., Liu, J., Su, H.: Preparation and characteristics of biodegradable mulching films based on fermentation industry wastes. Int. Biodeterior. Biodegradation 111(54), 494–561 (2016). https://doi.org/10.1016/J.IBIOD.2016.04.024
Article
Google Scholar
Smith, N.R., Dawson, V.T.: The bacteriostatic action of rose bengal in media used for plate counts of soil fungi. Soil Sci. 58, 467–472 (1944). https://doi.org/10.1097/00010694-194412000-00006
Article
Google Scholar
Zhang, J., Zhang, L.: Improvement of an isolation medium for actinomycetes. Mod. Appl. Sci. 5, 124–127 (2011). https://doi.org/10.5539/mas.v5n2p124
Article
Google Scholar
Ohta, H., Hattori, T.: Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26, 99–107 (1980). https://doi.org/10.1080/00380768.1980.10433216
Article
Google Scholar
Li, R., Hou, X., Jia, Z., Han, Q., Ren, X., Yang, B.: Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 116, 101–109 (2013). https://doi.org/10.1016/J.AGWAT.2012.10.001
Article
Google Scholar
Martín-Closas, L., Costa, J., Pelacho, A.M.: Agronomic effects of biodegradable films on crop and field environment. In: Malinconico, M. (ed.) Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Green Chemistry and Sustainable Technology, pp. 67–104. Springer, Berlin (2017)
Chapter
Google Scholar
Liu, D.C., Gao, F.Y.: Multi-functional characteristics of novel biodegradable mulching films from citric acid fermentation wastes. Waste Biomass Valoriz. 9, 1379–1387 (2018). https://doi.org/10.1007/s12649-017-9918-9
Article
Google Scholar
Craigie, J.S.: Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23, 371–393 (2011). https://doi.org/10.1007/s10811-010-9560-4
Article
Google Scholar
Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., Prithiviraj, B.: Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399 (2009). https://doi.org/10.1007/s00344-009-9103-x
Article
Google Scholar
Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., Sharma, S.: Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30, 161–175 (2010). https://doi.org/10.3109/07388550903524243
Article
Google Scholar
Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M.S., Grotewold, E.: Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. (2015). https://doi.org/10.1080/15592324.2015.1027850
Article
Google Scholar
Eryılmaz, F.: The Relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotechnol. Equip. 20, 47–52 (2006). https://doi.org/10.1080/13102818.2006.10817303
Article
Google Scholar
Jezek, M., Zörb, C., Merkt, N., Geilfus, C.M.: Anthocyanin management in fruits by fertilization. J. Agric. Food Chem. 66, 753–764 (2018). https://doi.org/10.1021/acs.jafc.7b03813
Article
Google Scholar
Moor, U., Karp, K., Põldma, P., Pae, A.: Cultural systems affect content of anthocyanins and vitamin C in strawberry fruits. Eur. J. Hortic. Sci. 70, 195–201 (2005)
Google Scholar
Sartore, L., Schettini, E., de Palma, L., Brunetti, G., Cocozza, C., Vox, G.: Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci Total Environ. 645, 1221–1229 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.259
Article
Google Scholar
Bandopadhyay, S., Martin-Closas, L., Pelacho, A.M., DeBruyn, J.M.: Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front. Microbiol. 9, 819 (2018). https://doi.org/10.3389/fmicb.2018.00819
Article
Google Scholar
Moreno, M.M., Moreno, A.: Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hortic. (Amsterdam) 116, 256–263 (2008). https://doi.org/10.1016/J.SCIENTA.2008.01.007
Article
Google Scholar
Ma, K.-W., Ma, W.: Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 91, 713–725 (2016). https://doi.org/10.1007/s11103-016-0452-0
Article
Google Scholar
Ishii, T., Kitabayashi, H., Aikawa, J., Matsumoto, I., Kadoya, K., Kirino, S.: Effects of alginate oligosaccharide and polyamines on hyphal growth of vesicular-arbuscular mycorrhizal fungi and their infectivity of citrus Rroots. In: Proceedings International Society of Citriculture. pp. 1030–1032. ISC (2003)
Kuwada, K., Wamocho, L.S., Utamura, M., Matsushita, I., Ishii, T.: Effect of red and green algal extracts on hyphal growth of arbuscular mycorrhizal fungi, and on mycorrhizal development and growth of papaya and passion fruit. Agron. J. 98, 1340 (2006). https://doi.org/10.2134/agronj2005.0354
Article
Google Scholar
de Vries, F.T., Hoffland, E., van Eekeren, N., Brussaard, L., Bloem, J.: Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006). https://doi.org/10.1016/j.soilbio.2006.01.008
Article
Google Scholar