Skip to main content

Development of Sprayable Sodium Alginate-Seaweed Agricultural Mulches with Nutritional Benefits for Substrates and Plants

Abstract

Sprayable agricultural mulch suspensions were prepared from the combination of sodium alginate (Alg) and three different concentrations of the seaweed Undaria pinnatifida (A) microparticles: 0.5, 1, and 2 wt%. Growth parameters were measured in tomato plants cultivated under each type of mulches, including polyethylene (PE) as a control treatment. The aerial fresh and dry weights (FW and DW, respectively), chlorophyll (Chl) content, green canopy cover, and the anthocyanin content were determined in tomato plants at the end of the bioassays. The soil temperature and moisture were measured during the experiment. Besides, the impact of the different mulch treatments on soil microorganisms was assayed by measuring the relative abundance of bacteria, fungi, and actinomycetes. Results indicated that the percentage of A in the mulch formulation was crucial to confer it with biostimulant properties. Alg with 1 wt% of A provided a significant increment in FW and DW and the Chl level of tomato plants, demonstrating that the developed formulations represent a useful material for horticulture production.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

A:

Undaria pinnatifida Algae microparticles

Alg:

Sodium alginate

Gly:

Glycerol

PE:

Polyethylene

FW:

Fresh weight

DW:

Dry weight

SWC:

Soil water content

Chl:

Chlorophyll

References

  1. Malinconico, M., Immirzi, B., Santagata, G., Schettini, E., Vox, G., Mugnozza, G.S.: An overview on innovative biodegradable materials for agricultural applications. In: Moeller, H.W. (ed.) Progress in Polymer Degradation and Stability Research, pp. 69–114. Nova Science, New York (2008)

    Google Scholar 

  2. Ghimire, S., Hayes, D., Cowan, J.S., Inglis, D., DeVetter, L.W., Miles, C.A.: Biodegradable Plastic Mulch and Suitability for Sustainable and Organic Agriculture. Washington State University Extension, Pullman, Washington (2018)

    Google Scholar 

  3. Sander, M.: Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions. Environ. Sci. Technol. 53, 2304–2315 (2019). https://doi.org/10.1021/acs.est.8b05208

    Article  Google Scholar 

  4. Ramos, L., Berenstein, G., Hughes, E.A., Zalts, A., Montserrat, J.M.: Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 523, 74–81 (2015). https://doi.org/10.1016/J.SCITOTENV.2015.03.142

    Article  Google Scholar 

  5. Food and Agriculture Organization of the United Nations, (FAO): Food and Agriculture: Driving action across the 2030 Agenda for Sustainable Development. (2017)

  6. Dmytryk, A., Chojnacka, K.: Algae as fertilizers, biostimulants, and regulators of plant growth. In: Chojnacka, K., Wieczorek, P., Schroeder, G., Michalak, I. (eds.) Algae Biomass: Characteristics and Applications, pp. 115–122. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  7. Battacharyya, D., Babgohari, M.Z., Rathor, P., Prithiviraj, B.: Seaweed extracts as biostimulants in horticulture. Sci. Hortic. (Amsterdam) 196, 39–48 (2015). https://doi.org/10.1016/J.SCIENTA.2015.09.012

    Article  Google Scholar 

  8. Manivasagan, P., Oh, J.: Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol. 82, 315–327 (2016). https://doi.org/10.1016/j.ijbiomac.2015.10.081

    Article  Google Scholar 

  9. Salcedo, M.F., Colman, S.L., Mansilla, A.Y., Martínez, M.A., Fiol, D.F., Alvarez, V.A., Casalongué, C.A.: Amelioration of tomato plants cultivated in organic matter impoverished soil by supplementation with Undaria pinnatifida. Algal Res. 46, 101785 (2020). https://doi.org/10.1016/j.algal.2019.101785

    Article  Google Scholar 

  10. Liu, H., Zhang, Y.-H., Yin, H., Wang, W.-X., Zhao, X.-M., Du, Y.-G.: Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol. Biochem. 62, 33–40 (2013). https://doi.org/10.1016/J.PLAPHY.2012.10.012

    Article  Google Scholar 

  11. Zhang, Y., Yin, H., Zhao, X., Wang, W., Du, Y., He, A., Sun, K.: The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr. Polym. 113, 446–454 (2014). https://doi.org/10.1016/j.carbpol.2014.06.079

    Article  Google Scholar 

  12. Gómez-Ordóñez, E., Rupérez, P.: FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 25, 1514–1520 (2011). https://doi.org/10.1016/J.FOODHYD.2011.02.009

    Article  Google Scholar 

  13. da Silva, T.L., Vidart, J.M.M., da Silva, M.G.C., Gimenes, M.L., Vieira, M.G.A.: Alginate and Sericin: environmental and pharmaceutical applications. In: Shalaby, E.A. (ed.) Biological Activities and Application of Marine Polysaccharides, pp. 57–85. InTechOpen, London (2017)

    Google Scholar 

  14. Liling, G., Di, Z., Jiachao, X., Xin, G., Xiaoting, F., Qing, Z.: Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydr. Polym. 136, 259–265 (2016). https://doi.org/10.1016/J.CARBPOL.2015.09.034

    Article  Google Scholar 

  15. Immirzi, B., Santagata, G., Vox, G., Schettini, E.: Preparation, characterization and field-testing of a biodegradable sodium alginate-based spray mulch. Biosyst. Eng. 102, 461–472 (2009). https://doi.org/10.1016/J.BIOSYSTEMSENG.2008.12.008

    Article  Google Scholar 

  16. Schettini, E., Vox, G., De Lucia, B.: Effects of the radiometric properties of innovative biodegradable mulching materials on snapdragon cultivation. Sci. Hortic. (Amsterdam) 112, 456–461 (2007). https://doi.org/10.1016/J.SCIENTA.2007.01.013

    Article  Google Scholar 

  17. Sakugawa, K., Ikeda, A., Takemura, A., Ono, H.: Simplified method for estimation of composition of alginates by FTIR. J. Appl. Polym. Sci. 93, 1372–1377 (2004). https://doi.org/10.1002/app.20589

    Article  Google Scholar 

  18. Terrafertil Multipro Hortícola. https://terrafertil.com/productos_profesionales/sustratos_multipro.html. Accessed 10 Feb 2021

  19. Patrignani, A., Ochsner, T.E.: Canopeo: a powerful new tool for measuring fractional green canopy cover. Agron. J. 107, 2312–2320 (2015). https://doi.org/10.2134/agronj15.0150

    Article  Google Scholar 

  20. Val Falcón, J., Heras Cobo, L., Monge Pacheco, E.: Nuevas ecuaciones para la determinación de pigmentos fotosintéticos en acetona. An. Estac. Exp. Aula Dei. 17(3/4), 231–238 (1985). https://digital.csic.es/handle/10261/13836

  21. Giusti, M.M., Wrolstad, R.E.: Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. (2001). https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  22. Ma, Z., Ma, Y., Qin, L., Liu, J., Su, H.: Preparation and characteristics of biodegradable mulching films based on fermentation industry wastes. Int. Biodeterior. Biodegradation 111(54), 494–561 (2016). https://doi.org/10.1016/J.IBIOD.2016.04.024

    Article  Google Scholar 

  23. Smith, N.R., Dawson, V.T.: The bacteriostatic action of rose bengal in media used for plate counts of soil fungi. Soil Sci. 58, 467–472 (1944). https://doi.org/10.1097/00010694-194412000-00006

    Article  Google Scholar 

  24. Zhang, J., Zhang, L.: Improvement of an isolation medium for actinomycetes. Mod. Appl. Sci. 5, 124–127 (2011). https://doi.org/10.5539/mas.v5n2p124

    Article  Google Scholar 

  25. Ohta, H., Hattori, T.: Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26, 99–107 (1980). https://doi.org/10.1080/00380768.1980.10433216

    Article  Google Scholar 

  26. Li, R., Hou, X., Jia, Z., Han, Q., Ren, X., Yang, B.: Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 116, 101–109 (2013). https://doi.org/10.1016/J.AGWAT.2012.10.001

    Article  Google Scholar 

  27. Martín-Closas, L., Costa, J., Pelacho, A.M.: Agronomic effects of biodegradable films on crop and field environment. In: Malinconico, M. (ed.) Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Green Chemistry and Sustainable Technology, pp. 67–104. Springer, Berlin (2017)

    Chapter  Google Scholar 

  28. Liu, D.C., Gao, F.Y.: Multi-functional characteristics of novel biodegradable mulching films from citric acid fermentation wastes. Waste Biomass Valoriz. 9, 1379–1387 (2018). https://doi.org/10.1007/s12649-017-9918-9

    Article  Google Scholar 

  29. Craigie, J.S.: Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23, 371–393 (2011). https://doi.org/10.1007/s10811-010-9560-4

    Article  Google Scholar 

  30. Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., Prithiviraj, B.: Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399 (2009). https://doi.org/10.1007/s00344-009-9103-x

    Article  Google Scholar 

  31. Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., Sharma, S.: Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30, 161–175 (2010). https://doi.org/10.3109/07388550903524243

    Article  Google Scholar 

  32. Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M.S., Grotewold, E.: Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. (2015). https://doi.org/10.1080/15592324.2015.1027850

    Article  Google Scholar 

  33. Eryılmaz, F.: The Relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotechnol. Equip. 20, 47–52 (2006). https://doi.org/10.1080/13102818.2006.10817303

    Article  Google Scholar 

  34. Jezek, M., Zörb, C., Merkt, N., Geilfus, C.M.: Anthocyanin management in fruits by fertilization. J. Agric. Food Chem. 66, 753–764 (2018). https://doi.org/10.1021/acs.jafc.7b03813

    Article  Google Scholar 

  35. Moor, U., Karp, K., Põldma, P., Pae, A.: Cultural systems affect content of anthocyanins and vitamin C in strawberry fruits. Eur. J. Hortic. Sci. 70, 195–201 (2005)

    Google Scholar 

  36. Sartore, L., Schettini, E., de Palma, L., Brunetti, G., Cocozza, C., Vox, G.: Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci Total Environ. 645, 1221–1229 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.259

    Article  Google Scholar 

  37. Bandopadhyay, S., Martin-Closas, L., Pelacho, A.M., DeBruyn, J.M.: Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front. Microbiol. 9, 819 (2018). https://doi.org/10.3389/fmicb.2018.00819

    Article  Google Scholar 

  38. Moreno, M.M., Moreno, A.: Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hortic. (Amsterdam) 116, 256–263 (2008). https://doi.org/10.1016/J.SCIENTA.2008.01.007

    Article  Google Scholar 

  39. Ma, K.-W., Ma, W.: Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 91, 713–725 (2016). https://doi.org/10.1007/s11103-016-0452-0

    Article  Google Scholar 

  40. Ishii, T., Kitabayashi, H., Aikawa, J., Matsumoto, I., Kadoya, K., Kirino, S.: Effects of alginate oligosaccharide and polyamines on hyphal growth of vesicular-arbuscular mycorrhizal fungi and their infectivity of citrus Rroots. In: Proceedings International Society of Citriculture. pp. 1030–1032. ISC (2003)

  41. Kuwada, K., Wamocho, L.S., Utamura, M., Matsushita, I., Ishii, T.: Effect of red and green algal extracts on hyphal growth of arbuscular mycorrhizal fungi, and on mycorrhizal development and growth of papaya and passion fruit. Agron. J. 98, 1340 (2006). https://doi.org/10.2134/agronj2005.0354

    Article  Google Scholar 

  42. de Vries, F.T., Hoffland, E., van Eekeren, N., Brussaard, L., Bloem, J.: Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006). https://doi.org/10.1016/j.soilbio.2006.01.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Research Council (CONICET), Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+i), Argentina and the National University of Mar del Plata (UNMdP), Mar del Plata, Argentina.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Danila Merino or María F. Salcedo.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 149 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merino, D., Salcedo, M.F., Mansilla, A.Y. et al. Development of Sprayable Sodium Alginate-Seaweed Agricultural Mulches with Nutritional Benefits for Substrates and Plants. Waste Biomass Valor 12, 6035–6043 (2021). https://doi.org/10.1007/s12649-021-01441-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01441-x

Keywords

  • Algal microparticle
  • Biodegradable
  • Biostimulant
  • Mulch
  • Tomato