Skip to main content
Log in

Sequential Alkaline and Ultrasound Pretreatments of Oat Hulls Improve Xylanase Production by Aureobasidium pullulans in Submerged Cultivation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Xylanases are hydrolase enzymes mainly produced by microorganisms and applied in several industrial segments. In this paper, the effects of different pretreatments of oat hulls were evaluated on the production of xylanase by Aureobasidium pullulans CCT 1261 under submerged cultivation.

Methods

Oat hulls were subjected to several pretreatments: alkaline (0.5, 1, 2, 3, and 4% of NaOH, w/v), alkaline hydrogen peroxide (7.5% of H2O2, v/v), ultrasound-assisted alkaline (1% of NaOH, w/v, 90 W, 20 kHz), and sequential alkaline and ultrasound procedures. Both untreated and pretreated oat hulls were used as substrates for xylanase production by the strain CCT 1261. Changes caused by the pretreatments were observed through the characterization of oat hulls (i.e. lignocellulosic composition and scanning electron microscopy) and then related to the enzymatic production.

Results

Sequential alkaline and ultrasound pretreatments on oat hulls promoted the highest xylanase production (30.2 U/mL) and productivity (0.42 U/mL.h) in comparison to the other strategies evaluated. The sequential pretreatment of oat hulls also increased xylanase production more than 11-fold when compared to the untreated substrate. The effectiveness of the sequential procedure, and consequent increase in xylanase production, were attributed to the physical modification of the biomass surface by the ultrasound waves, as well as the lignin removal and hemicellulose maintenance by the alkaline pretreatment with 1% NaOH.

Conclusion

Sequential pretreatment of oat hulls allowed the production of microbial xylanases in a more sustainable way using an agricultural by-product as substrate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhowmick, G.D., Sarmah, A.K., Sen, R.: Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour. Technol. 247, 1144–1154 (2018). https://doi.org/10.1016/j.biortech.2017.09.163

    Article  Google Scholar 

  2. Jönsson, L.J., Martín, C.: Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016). https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  3. Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015). https://doi.org/10.1039/C5PY00263J

    Article  Google Scholar 

  4. Kumar, A.K., Sharma, S.: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4, 1–19 (2017). https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  5. Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: An overview. Renew. Energy. 37, 19–27 (2012). https://doi.org/10.1016/j.renene.2011.06.045

    Article  Google Scholar 

  6. Taha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., Ball, A.: Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 38, 190–197 (2016). https://doi.org/10.1016/j.copbio.2016.02.012

    Article  Google Scholar 

  7. Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchinnikova, E.V., Banzaraktsaeva, S.P., Vernikovskaya, N.V., Chumachenko, V.A.: Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene. Chem. Eng. J. 329, 178–186 (2017). https://doi.org/10.1016/j.cej.2017.05.182

    Article  Google Scholar 

  8. Pereira, P.H.F., Waldron, K.W., Wilson, D.R., Cunha, A.P., de Brito, E.S., Rodrigues, T.H.S., Rosa, M.F., Azeredo, H.M.C.: Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydr. Polym. 164, 317–324 (2017). https://doi.org/10.1016/j.carbpol.2017.02.019

    Article  Google Scholar 

  9. de Oliveira, J.P., Bruni, G.P., Lima, K.O., El Hallal, S.L.M., da Rosa, G.S., Dias, A.R.G., da Zavareze, E., R. : Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 221, 153–160 (2017). https://doi.org/10.1016/j.foodchem.2016.10.048

    Article  Google Scholar 

  10. Abaide, E.R., Ugalde, G., Di Luccio, M., Moreira, R.F.P.M., Tres, M.V., Zabot, G.L., Mazutti, M.A.: Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresour. Technol. 272, 510–520 (2019). https://doi.org/10.1016/j.biortech.2018.10.075

    Article  Google Scholar 

  11. Amorim, C., Silvério, S.C., Rodrigues, L.R.: One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing Trichoderma species. Food Chem. 270, 86–94 (2019). https://doi.org/10.1016/j.foodchem.2018.07.080

    Article  Google Scholar 

  12. Varanasi, P., Singh, P., Auer, M., Adams, P.D., Simmons, B.A., Singh, S.: Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnol. Biofuels. 6, 1–9 (2013). https://doi.org/10.1186/1754-6834-6-14

    Article  Google Scholar 

  13. Pereira, G.F., de Bastiani, D., Gabardo, S., Squina, F., Ayub, M.A.Z.: Solid-state cultivation of recombinant Aspergillus nidulans to co-produce xylanase, arabinofuranosidase, and xylooligosaccharides from soybean fibre. Biocatal. Agric. Biotechnol. 15, 78–85 (2018). https://doi.org/10.1016/j.bcab.2018.05.012

    Article  Google Scholar 

  14. Salomão, G.S.B., Agnezi, J.C., Bastos, L.P., Hencker, L.B., de Lira, T.S., Tardioli, P.W., Pinotti, L.M.: Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatal. Agric. Biotechnol. 17, 1–6 (2019). https://doi.org/10.1016/j.bcab.2018.10.019

    Article  Google Scholar 

  15. Wang, W.M., Klopfenstein, C.F.: Effect of twin-screw extrusion on the nutricional quality of wheat, barley, and oats. Cereal Chem. 70, 712–715 (1993)

    Google Scholar 

  16. Cortivo, P.R.D., Hickert, L.R., Hector, R., Ayub, M.A.Z.: Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crop. Prod. 113, 10–18 (2018). https://doi.org/10.1016/j.indcrop.2018.01.010

    Article  Google Scholar 

  17. Tamanini, C., de Oliveira, A.S., de Felipe, M.D.G.A., Canettieri, E.V., Cândido, E.J., de Hauly, M.C.O.: Avaliação da casca de aveia para produção biotecnológica de xilitol. Acta Sci. Technol. 26, 117–125 (2004)

    Google Scholar 

  18. Demirel, F., Germec, M., Bugra, H., Irfan, C.: Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 25, 6377–6393 (2018). https://doi.org/10.1007/s10570-018-2022-x

    Article  Google Scholar 

  19. Decker, E.A., Rose, D.J., Stewart, D.: Processing of oats and the impact of processing operations on nutrition and health benefits. Br. J. Nutr. 112, 58–64 (2014). https://doi.org/10.1017/S000711451400227X

    Article  Google Scholar 

  20. United States Departament of Agriculture (USDA): Grain: World Markets and Trade, https://www.fas.usda.gov/data/grain-world-markets-and-trade. Accessed 20 January 2021.

  21. Dhillon, A., Gupta, J.K., Jauhari, B.M., Khanna, S.: A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour. Technol. 73, 273–277 (2000)

    Article  Google Scholar 

  22. Oliveira, L.A., Porto, A.L.F., Tambourgi, E.B.: Production of xylanase and protease by Penicillium janthinellum CRC 87M–115 from different agricultural wastes. Bioresour. Technol. 97, 862–867 (2006). https://doi.org/10.1016/j.biortech.2005.04.017

    Article  Google Scholar 

  23. Xiong, H., Weymarn, N.V., Turunen, O., Leisola, M., Pastinen, O.: Xylanase production by Trichoderma reesei Rut C-30 grown on L -arabinose-rich plant hydrolysates. Bioresour. Technol. 96, 753–759 (2005). https://doi.org/10.1016/j.biortech.2004.08.007

    Article  Google Scholar 

  24. Uday, U.S.P., Choudhury, P., Bandyopadhyay, T.K., Bhunia, B.: Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041–1054 (2016). https://doi.org/10.1016/j.ijbiomac.2015.10.086

    Article  Google Scholar 

  25. Shallom, D., Shoham, Y.: Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219–228 (2003). https://doi.org/10.1016/S1369-5274(03)00056-0

    Article  Google Scholar 

  26. Collins, T., Gerday, C., Feller, G.: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005). https://doi.org/10.1016/j.femsre.2004.06.005

    Article  Google Scholar 

  27. Walia, A., Guleria, S., Mehta, P., Chauhan, A.: Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 7, 1–12 (2017). https://doi.org/10.1007/s13205-016-0584-6

    Article  Google Scholar 

  28. Adhyaru, D.N., Bhatt, N.S., Modi, H.A., Divecha, J.: Cellulase-free-thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8: Over-production through statistical approach, purification and bio- deinking/bio-bleaching potential. Biocatal. Agric. Biotechnol. 12, 220–227 (2017). https://doi.org/10.1016/j.bcab.2017.10.010

    Article  Google Scholar 

  29. Ghayour-Najafabadi, P., Khosravinia, H., Gheisari, A., Azarfar, A., Khanahmadi, M.: Productive performance, nutrient digestibility and intestinal morphometry in broiler chickens fed corn or wheat-based diets supplemented with bacterial- or fungal-originated xylanase. Ital. J. Anim. Sci. 17, 165–174 (2018). https://doi.org/10.1080/1828051X.2017.1328990

    Article  Google Scholar 

  30. Abd El Aty, A.A., Saleh, S.A.A., Eid, B.M., Ibrahim, N.A., Mostafa, F.A.: Thermodynamics characterization and potential textile applications of Trichoderma longibrachiatum KT693225 xylanase. Biocatal. Agric. Biotechnol. 14, 129–137 (2018). https://doi.org/10.1016/j.bcab.2018.02.011

    Article  Google Scholar 

  31. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P.: An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour. Technol. 256, 399–407 (2018). https://doi.org/10.1016/j.biortech.2018.02.004

    Article  Google Scholar 

  32. Shahrestani, H., Taheri-Kafrani, A., Soozanipour, A., Tavakoli, O.: Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem. Eng. J. 109, 51–58 (2016). https://doi.org/10.1016/j.bej.2015.12.013

    Article  Google Scholar 

  33. Liu, W., Brennan, M.A., Serventi, L., Brennan, C.S.: Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem. 234, 93–102 (2017). https://doi.org/10.1016/j.foodchem.2017.04.160

    Article  Google Scholar 

  34. Ajijolakewu, K.A., Peng, C., Keong, C., Abdullah, W., Nadiah, W.: Characterization of novel Trichoderma hemicellulase and its use to enhance downstream processing of lignocellulosic biomass to simple fermentable sugars. Biocatal. Agric. Biotechnol. 11, 166–175 (2017). https://doi.org/10.1016/j.bcab.2017.06.005

    Article  Google Scholar 

  35. Ding, C., Li, M., Hu, Y.: High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production. Int. J. Biol. Macromol. 117, 72–77 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.128

    Article  Google Scholar 

  36. Menezes, B.S., Rossi, D.M., Ayub, M.A.Z.: Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates. World J. Microbiol. Biotechnol. 33, 1–12 (2017). https://doi.org/10.1007/s11274-017-2226-5

    Article  Google Scholar 

  37. Leite, P., Manuel, J., Venâncio, A., Manuel, J., Belo, I.: Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 214, 737–746 (2016). https://doi.org/10.1016/j.biortech.2016.05.028

    Article  Google Scholar 

  38. Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Ahmed, A., Karim, S., Yu, G.: Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122, 724–745 (2017)

    Article  Google Scholar 

  39. Sun, S., Sun, S., Cao, X., Sun, R.: The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199, 49–58 (2016). https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  40. Bandikari, R., Poondla, V., Obulam, V.S.R.: Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. 3 Biotech. 4, 655–664 (2014). https://doi.org/10.1007/s13205-014-0239-4

    Article  Google Scholar 

  41. Silva, F.L., de Campos, A.O., dos Santos, D.A., Oliveira Júnior, S.D., de Padilha, C.E.A., de Sousa Junior, F.C., de Macedo, G.R., dos Santos, E.S.: Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation. Renew. Energy. 116, 299–308 (2018). https://doi.org/10.1016/j.renene.2017.09.064

    Article  Google Scholar 

  42. Sindhu, R., Binod, P., Mathew, A.K., Abraham, A., Gnansounou, E., Ummalyma, S.B., Thomas, L., Pandey, A.: Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. Bioresour. Technol. 242, 146–151 (2017). https://doi.org/10.1016/j.biortech.2017.03.001

    Article  Google Scholar 

  43. Silva, D.F., Hergesel, L.M., Campioni, T.S., Carvalho, A.F.A., Oliva-Neto, P.: Evaluation of different biological and chemical treatments in agroindustrial residues for the production of fungal glucanases and xylanases. Process Biochem. 67, 29–37 (2018). https://doi.org/10.1016/j.procbio.2018.02.008

    Article  Google Scholar 

  44. Panwar, D., Srivastava, K.: Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal. Agric. Biotechnol. 3, 118–125 (2014). https://doi.org/10.1016/j.bcab.2013.09.006

    Article  Google Scholar 

  45. Ang, S.K., Shaza, E.M., Adibah, Y.A., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48, 1293–1302 (2013). https://doi.org/10.1016/j.procbio.2013.06.019

    Article  Google Scholar 

  46. dos Reis, L., Fontana, R.C., da Silva Delabona, P., da Silva Lima, D.J., Camassola, M., Pradella, J.G.C., Dillon, A.J.P.: Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour. Technol. 146, 597–603 (2013). https://doi.org/10.1016/j.biortech.2013.07.124

  47. Otero, D.M., Cadaval, C.L., Teixeira, L.M., Rosa, C.A., Sanzo, A.V.L., Kalil, S.J.: Screening of yeasts capable of producing cellulase-free xylanase. African J. Biotechnol. 14, 1961–1969 (2015). https://doi.org/10.5897/AJB2015.14476

    Article  Google Scholar 

  48. Adsul, M.G., Bastawde, K.B., Gokhale, D.V.: Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Bioresour. Technol. 100, 6488–6495 (2009). https://doi.org/10.1016/j.biortech.2009.07.064

    Article  Google Scholar 

  49. Cavka, A., Jönsson, L.J.: Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media. Biocatal. Agric. Biotechnol. 3, 197–204 (2014)

    Article  Google Scholar 

  50. Rich, J.O., Leathers, T.D., Anderson, A.M., Bischoff, K.M.: Laccases from Aureobasidium pullulans. Enzyme Microb. Technol. 53, 33–37 (2013). https://doi.org/10.1016/j.enzmictec.2013.03.015

    Article  Google Scholar 

  51. Leathers, T.D., Rich, J.O., Anderson, A.M., Manitchotpisit, P.: Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnol. Lett. 35, 1701–1706 (2013). https://doi.org/10.1007/s10529-013-1268-5

    Article  Google Scholar 

  52. Leite, R.S.R., Alves-Prado, H.F., Cabral, H., Pagnocca, F.C., Gomes, E., Da-Silva, R.: Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb. Technol. 43, 391–395 (2008). https://doi.org/10.1016/j.enzmictec.2008.07.006

    Article  Google Scholar 

  53. Lemes, A.C., Silvério, S.C., Rodrigues, S., Rodrigues, L.R.: Integrated strategy for purification of esterase from Aureobasidium pullulans. Sep. Purif. Technol. 209, 409–418 (2019). https://doi.org/10.1016/j.seppur.2018.07.062

    Article  Google Scholar 

  54. Yegin, S., Buyukkileci, A.O., Sargin, S., Goksungur, Y.: Exploitation of Agricultural Wastes and By-Products for Production of Aureobasidium pullulans Y-2311-1 Xylanase: Screening, Bioprocess Optimization and Scale Up. Waste and Biomass Valorization. 8, 999–1010 (2017). https://doi.org/10.1007/s12649-016-9646-6

    Article  Google Scholar 

  55. Gautério, G.V., Vieira, M.C., Gonçalves, L.G.G., Hübner, T., Sanzo, A.V.L., Kalil, S.J.: Production of xylanolitic enzymes and xylooligosaccharides by Aureobasidium pullulans CCT 1261 in submerged cultivation. Ind. Crops Prod. 125, 335–345 (2018). https://doi.org/10.1016/j.indcrop.2018.09.011

    Article  Google Scholar 

  56. Yegin, S.: Xylanase production by Aureobasidium pullulanson globe artichoke stem: Bioprocess optimization, enzyme characterization, and application in saccharification of lignocellulosic biomass. Prep. Biochem. Biotechnol. 47, 441–449 (2016). https://doi.org/10.1080/10826068.2016.1224245

    Article  Google Scholar 

  57. Gautério, G.V., da Silva, L.G.G., Hübner, T., da Rosa Ribeiro, T., Kalil, S.J.: Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatal. Agric. Biotechnol. 23, 101511 (2020). https://doi.org/10.1016/j.bcab.2020.101511

    Article  Google Scholar 

  58. AOAC: Official Methods of Analysis of International. Association of Official Analytical Chemists, Arlington (2000)

  59. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report NREL/TP-510–42618. (2008)

  60. Goldschmid, O.: Ultraviolet spectra. In: Sarkanen, K.V., Ludwig, C.H. (eds.) Lignins: Occurrence, formation, structure and reactions, pp. 241–266. Wiley, New York (1971)

    Google Scholar 

  61. Goyal, M., Kalra, K.L., Sareen, V.K., Soni, G.: Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Brazilian J. Microbiol. 39, 535–541 (2008). https://doi.org/10.1590/S1517-838220080003000025

    Article  Google Scholar 

  62. Rabelo, S.C., Andrade, R.R., Filho, R.M., Costa, A.C.: Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel 136, 349–357 (2014). https://doi.org/10.1016/j.fuel.2014.07.033

    Article  Google Scholar 

  63. Christov, L.P., Myburgh, J., Van Tonder, A., Prior, B.A.: Hydrolysis of extracted and fibre-bound xylan with Aureobasidium pullulans enzymes. J. Biotechnol. 55, 21–29 (1997). https://doi.org/10.1016/S0168-1656(97)00048-5

    Article  Google Scholar 

  64. Sugumaran, K.R., Gowthami, E., Swathi, B., Elakkiya, S., Srivastava, S.N., Ravikumar, R., Gowdhaman, D., Ponnusami, V.: Production of pullulan by Aureobasidium pullulans from Asian palm kernel: A novel substrate. Carbohydr. Polym. 92, 697–703 (2013). https://doi.org/10.1016/j.carbpol.2012.09.062

    Article  Google Scholar 

  65. Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992). https://doi.org/10.1016/0168-1656(92)90074-J

    Article  Google Scholar 

  66. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  67. Lowry, O.H., Rosebrough, N.J., Farr, L., Randall, R.J., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 93, 265–275 (1951)

    Article  Google Scholar 

  68. Rodrigues, P.O., dos Santos, B.V., Costa, L., Henrique, M.A., Pasquini, D., Baffi, M.A.: Xylanase and β-glucosidase production by Aspergillus fumigatus using commercial and lignocellulosic substrates submitted to chemical pre-treatments. Ind. Crops Prod. 95, 453–459 (2017). https://doi.org/10.1016/j.indcrop.2016.10.055

    Article  Google Scholar 

  69. Dias, L.M., Santos, B.V., Albuquerque, C.J.B., Baeta, B.E.L., Pasquini, D., Baffi, M.A.: Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J. Appl. Microbiol. 124, 708–718 (2017). https://doi.org/10.1111/jam.13672

    Article  Google Scholar 

  70. Menegol, D., Scholl, A.L., Dillon, A.J.P., Camassola, M.: Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation. Bioprocess Biosyst. Eng. 39, 1455–1464 (2016). https://doi.org/10.1007/s00449-016-1623-8

    Article  Google Scholar 

  71. Wang, Z., Keshwani, D.R., Redding, A.P., Cheng, J.J.: Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresour. Technol. 101, 3583–3585 (2010). https://doi.org/10.1016/j.biortech.2009.12.097

    Article  Google Scholar 

  72. Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C.: Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuel. 24, 2113–2119 (2010). https://doi.org/10.1021/ef9014718

    Article  Google Scholar 

  73. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016). https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  74. Subhedar, P.B., Gogate, P.R.: Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason. - Sonochemistry. 21, 216–225 (2014). https://doi.org/10.1016/j.ultsonch.2013.08.001

    Article  Google Scholar 

  75. Cabrera, E., Muñoz, M.J., Martín, R., Caro, I., Curbelo, C., Díaz, A.B.: Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresour. Technol. 167, 1–7 (2014). https://doi.org/10.1016/j.biortech.2014.05.103

    Article  Google Scholar 

  76. Chen, H., Han, Y., Xu, J.: Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem. 43, 1462–1466 (2008). https://doi.org/10.1016/j.procbio.2008.07.003

    Article  Google Scholar 

  77. Hammel, K.E., Kapich, A.N., Jensen, K.A., Jr., Ryan, Z.C.: Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30, 445–453 (2002)

    Article  Google Scholar 

  78. Sun, R.C., Tomkinson, J., Wang, Y.X., Xiao, B.: Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41, 2647–2656 (2000). https://doi.org/10.1016/S0032-3861(99)00436-X

    Article  Google Scholar 

  79. Soontornchaiboon, W., Kim, S.M., Pawongrat, R.: Effects of alkaline combined with ultrasonic pretreatment and enzymatic hydrolysis of agricultural wastes for high reducing sugar production. Sains Malaysiana. 45, 955–962 (2016)

    Google Scholar 

  80. Bussemaker, M.J., Zhang, D.: Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind. Eng. Chem. Res. 52, 3563–3580 (2013). https://doi.org/10.1021/ie3022785

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”–Brazil–Finance Code 001, and by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”–Brazil– Grant numbers 423285/2018-1 and 304857/2018-1. The authors are grateful to “Centro de Microscopia Eletrônica do Sul” (CEME-SUL/FURG) for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle Victoria Gautério.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, T.B., Corrêa Junior, L.C.S., de Mattos, M.V.C.d. et al. Sequential Alkaline and Ultrasound Pretreatments of Oat Hulls Improve Xylanase Production by Aureobasidium pullulans in Submerged Cultivation. Waste Biomass Valor 12, 5991–6004 (2021). https://doi.org/10.1007/s12649-021-01425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01425-x

Keywords

Navigation