Skip to main content
Log in

Efficient Enzymatic Process for Mulberry Paper Production: An Approach for Xylooligosaccharide Production Coupled with Minimizing Bleaching Agent Doses

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study focused on the applying endo-xylanases to reduce the use of bleaching agent, coupled with the production of xylooligosaccharides (XOs), in mulberry paper making. Paper mulberry pulp (PMP) was consecutively prepared from paper mulberry bark by traditional NaOH-treatment, and two types of thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 (wild-type and recombinant endo-xylanases) were employed in the biobleaching of PMP. This process was optimized to achieve maximum XOs yields and the highest PMP quality. The optimal condition was an enzyme dosage of 125 U/g PMP at 12 h of reaction time, both in a 500 mL laboratory bottle and a 150 L reactor. The mixture obtained from the reactor was separated as liquid of XOs derived from PMP (PMP-XOs) and solid biobleached PMP. The PMP-XOs from wild-type endo-xylanase were composed of 31.6% xylopentaose (X5), 30.9% xylohexaose and higher-degree XOs (X ≥ 6), and 11.7% xylobiose (X2), whereas 76.6% of X5 and 8.6% of X2 were the main products from recombinant endo-xylanase. The PMP-XOs derived from both endo-xylanase types exhibited high antioxidant activities, reducing power, phenolic contents, and prebiotic efficacy. In addition, the application of both endo-xylanases enhanced the brightness of PMP by 5.1% and 3.5%, and reduced the kappa number by 9.1% and 3.6%, respectively. Biobleached PMP was subsequently subjected to the NaOCl bleaching step to produce the mulberry paper. This approach could reduce NaOCl consumption by 20–25%, making it an environmentally friendly alternative. The production of valuable prebiotics, such as PMP-XOs, further enhances the economic viability of this approach.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data availability all data generated or analyzed during this study are included in this published article.

References

  1. Peng, X., Liu, H., Chen, P., Tang, F., Hu, Y., Wang, F., Pi, Z., Zhao, M., Chen, N., Chen, H., Zhang, X., Yan, X., Liu, M., Fu, X., Zhao, G., Yao, P., Wang, L., Dai, H., Li, X., Xiong, W., Xu, W., Zheng, H., Yu, H., Shen, S.: A chromosome-scale genome assembly of paper mulberry (Broussonetia papyrifera) provides new insights into its forage and papermaking usage. Mol. Plant. 12, 661–677 (2019)

    Article  Google Scholar 

  2. Jitjaicham, M., Kusuktham, B.: Preparation of paper mulberry fibers and possibility of cotton/paper mulberry yarns production. Indian J. Mater. Sci. 2016, 1–6 (2016)

    Article  Google Scholar 

  3. Memon, A., Ithisoponakul, S., Pramoonmak, S., Lawsuriyonta, M., Leenoi, D., Passadee, N.: A development of laminating mulberry paper by biodegradable films. Energy Procedia 9, 598–604 (2011). https://doi.org/10.1016/j.egypro.2011.09.070

    Article  Google Scholar 

  4. Sridevi, A., Ramanjaneyulu, G., Suvarnalatha Devi, P.: Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3 Biotech 266, 1–9 (2017)

    Google Scholar 

  5. Monte, M.C., Fuente, E., Blanco, A., Negro, C.: Waste management from pulp and paper production in the European Union. Waste Manage. 29, 293–308 (2009)

    Article  Google Scholar 

  6. Beg, Q., Kapoor, M., Mahajan, L., Hoondal, G.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001)

    Article  Google Scholar 

  7. Basit, A., Liu, J., Rahim, K., Jiang, W., Lou, H.: Thermophilic xylanases: from bench to bottle. Crit. Rev. Biotechnol. 38, 989–1002 (2018)

    Article  Google Scholar 

  8. Basit, A., Jiang, W., Rahim, K.: Xylanase and its industrial applications. IntechOpen, London (2020). https://doi.org/10.5772/intechopen.92156

    Book  Google Scholar 

  9. Basit, A., Liu, J., Miao, T., Zheng, F., Rahim, K., Lou, H., Jiang, W.: Characterization of two endo-β-1, 4-xylanases from Myceliophthora thermophila and their saccharification efficiencies, synergistic with commercial cellulase. Front. Microbiol. 9, 1–11 (2018)

    Article  Google Scholar 

  10. Chapla, D., Patel, H., Madamwar, D., Shah, A.: Assessment of a thermostable xylanase from Paenibacillus sp. ASCD2 for application in prebleaching of Eucalyptus kraft pulp. Waste Biomass Valor. 3, 269–274 (2012)

    Article  Google Scholar 

  11. Kumar, V., Marín-Navarro, J., Shukla, P.: Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J. Microbiol. Biotechnol. 32, 1–10 (2016)

    Article  Google Scholar 

  12. Nutongkaew, T., Prasertsan, P., Leamdum, C., Sattayasamitsathit, S., Noparat, P.: Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation. Waste Biomass. Valor. 11, 1333–1347 (2020)

    Article  Google Scholar 

  13. Bhardwaj, N., Kumar, B., Verma, P.: A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour. Bioprocess. 6, 1–36 (2019)

    Article  Google Scholar 

  14. Viikari, L., Kantelinen, A., Sundquist, J., Linko, M.: Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335–350 (1994)

    Article  Google Scholar 

  15. Nie, S., Wang, S., Qin, C., Yao, S., Ebonka, J.F., Song, X., Li, K.: Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour. Technol. 196, 413–417 (2015)

    Article  Google Scholar 

  16. Sharma, D., Chaudhary, R., Kaur, J., Arya, S.K.: Greener approach for pulp and paper industry by xylanase and laccase. Biocatal. Agric. Biotechnol. 25, 1–16 (2020)

    Article  Google Scholar 

  17. Chaiyaso, T., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmaungjai, P.: Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett-Burman and response surface methodological approaches. Biosci. Biotechnol. Biochem. 75, 531–537 (2011)

    Article  Google Scholar 

  18. Boonchuay, P., Techapun, C., Seesuriyachan, P., Chaiyaso, T.: Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Sci. Biotechnol. 23, 1515–1523 (2014)

    Article  Google Scholar 

  19. Boonchuay, P., Takenaka, S., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Chaiyaso, T.: Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. J. Mol. Catal. B 129, 61–68 (2016)

    Article  Google Scholar 

  20. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Takenaka, S., Chaiyaso, T.: An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour. Technol. 256, 399–407 (2018)

    Article  Google Scholar 

  21. Samanta, A.K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A.P., Senani, S., Sridhar, M.: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact. Carbohydr. Diet. Fibre 5, 62–71 (2015)

    Article  Google Scholar 

  22. Vázquez, M.J., Alonso, J.L., Domínguez, H., Parajó, J.C.: Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393 (2000)

    Article  Google Scholar 

  23. Aachary, A.A., Prapulla, S.G.: Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 10, 2–16 (2011)

    Article  Google Scholar 

  24. Farhat, W., Venditti, R., Quick, A., Taha, M., Mignard, N., Becquart, F., Ayoub, A.: Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crop. Prod. 107, 370–377 (2017)

    Article  Google Scholar 

  25. Takenaka, S., Umeda, M., Senba, H., Koyama, D., Tanaka, K., Yoshida, K., Doi, M.: Heterologous expression and characterisation of the Aspergillus aspartic protease involved in the hydrolysis and decolorisation of red-pigmented proteins. J. Sci. Food Agric. 97, 95–101 (2017)

    Article  Google Scholar 

  26. Sridevi, A., Sandhya, A., Ramanjaneyulu, G., Narasimha, G., Devi, P.S.: Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching. 3 Biotech 165, 1–7 (2016)

    Google Scholar 

  27. Kubata, B.K., Suzuki, T., Horitsu, H., Kawai, K., Takamizawa, K.: Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl. Environ. Microbiol. 60, 531–535 (1994)

    Article  Google Scholar 

  28. Veenashri, B.R., Muralikrishna, G.: In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans—a comparative study. Food Chem. 126, 1475–1481 (2011)

    Article  Google Scholar 

  29. Malunga, L.N., Beta, T.: Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chem. 167, 311–319 (2015)

    Article  Google Scholar 

  30. Wu, Z., Xu, E., Long, J., Pan, X., Xu, X., Jin, Z., Jiao, A.: Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine. Food Chem. 194, 671–679 (2016)

    Article  Google Scholar 

  31. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  32. Lasrado, L.D., Gudipati, M.: Purification and characterization of β-d-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydr. Polym. 92, 1978–1983 (2013)

    Article  Google Scholar 

  33. Campos, E., Negro Alvarez, M.J., Sabarís di Lorenzo, G., Gonzalez, S., Rorig, M., Talia, P., Grasso, D.H., Sáez, F., Manzanares Secades, P., Ballesteros Perdices, M., Cataldi, A.A.: Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria. Microbiol. Res. 169, 213–220 (2014)

    Article  Google Scholar 

  34. Technical Association of Pulp and Paper Industry (TAPPI) (2006) Forming handsheets for physical tests of pulp (Reaffirmation of T 205 sp-02), Norcross, GA, USA

  35. Technical Association of Pulp and Paper Industry (TAPPI) (2006) Forming handsheets for reflectance testing of pulp (Büchner funnel procedure) (Reaffirmation of T 218 sp-02), Norcross, GA, USA

  36. Brienzo, M., Carvalho, W., Milagres, A.M.F.: Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl. Biochem. Biotechnol. 162, 1195–1205 (2010)

    Article  Google Scholar 

  37. Jayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind. Crop. Prod. 42, 14–24 (2013)

    Article  Google Scholar 

  38. Campioni, T.S., de Jesus Moreira, L., Moretto, E., Sawada Nunes, N.S., de Oliva Neto, P.: Biobleaching of kraft pulp using fungal xylanases produced from sugarcane straw and the subsequent decrease of chlorine consumption. Biomass Bioenergy 121, 22–27 (2019)

    Article  Google Scholar 

  39. Khandeparkar, R., Bhosle, N.B.: Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresour. Technol. 98, 897–903 (2007)

    Article  Google Scholar 

  40. Juturu, V., Wu, J.C.: Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 30, 1219–1227 (2012)

    Article  Google Scholar 

  41. Si, B., Tao, H., Zhang, X., Guo, J., Cui, K., Tu, Y., Diao, Q.: Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian-Australas J. Anim. Sci. 31, 1259–1266 (2018)

    Article  Google Scholar 

  42. Xu, M.L., Wang, L., Hu, J.H., Lee, S.K., Wang, M.H.: Antioxidant activities and related polyphenolic constituents of the methanol extract fractions from Broussonetia papyrifera stem bark and wood. Food Sci. Biotechnol. 19, 677–682 (2010)

    Article  Google Scholar 

  43. Samanta, A.K., Senani, S., Kolte, A.P., Sridhar, M., Sampath, K.T., Jayapal, N., Devi, A.: Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process. 90, 466–474 (2012)

    Article  Google Scholar 

  44. Melo-Silveira, R.F., Fidelis, G.P., Costa, M.S., Telles, C.B., Dantas-Santos, N., Elias, S.D., Ribeiro, V.B., Barth, A.L., Macedo, A.J., Leite, E.L., Rocha, H.A.: In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. Int. J. Mol. Sci. 13, 409–426 (2012)

    Article  Google Scholar 

  45. Martin Salas-Veizaga, D., Villagomez, R., Linares-Pastén, J.A., Carrasco, C., Álvarez, M.T., Adlercreutz, P., Nordberg Karlsson, E.: Extraction of glucuronoarabinoxylan from quinoa stalks (Chenopodium quinoa Willd.) and evaluation of xylooligosaccharides produced by GH10 and GH11 xylanases. J. Agric. Food Chem. 65, 8663–8673 (2017)

    Article  Google Scholar 

  46. Morais de Carvalho, D., Martínez-Abad, A., Evtuguin, D.V., Colodette, J.L., Lindström, M.E., Vilaplana, F., Sevastyanova, O.: Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr. Polym. 156, 223–234 (2017)

    Article  Google Scholar 

  47. Alzagameem, A., Klein, S.E., Bergs, M., Do, X.T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., Schulze, M.: Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11, 1–18 (2019)

    Article  Google Scholar 

  48. Manisseri, C., Gudipati, M.: Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides. LWT - Food Sci. Technol. 43, 421–430 (2010)

    Article  Google Scholar 

  49. Madhukumar, M.S., Muralikrishna, G.: Fermentation of xylo-oligosaccharides obtained from wheat bran and bengal gram husk by lactic acid bacteria and bifidobacteria. J. Food Sci. Technol. 49, 745–752 (2012)

    Article  Google Scholar 

  50. Sreerangaraju, G., Krishnamoorthy, U., Kailas, M.M.: Evaluation of Bengal gram (Cicer arietinum) husk as a source of tannin and its interference in rumen and post-rumen nutrient digestion in sheep. Anim. Feed Sci. Technol. 85, 131–138 (2000)

    Article  Google Scholar 

  51. Sibakov, J., Lehtinen, P., Poutanen, K.: Cereal brans as dietary fibre ingredients. In: Delcour, J.A., Poutanen, K. (eds.) Fibre-rich and wholegrain foods, pp. 170–192. Woodhead Publishing, Cambridge (2013)

    Chapter  Google Scholar 

  52. Aminzadeh, S., Zhang, L., Henriksson, G.: A possible explanation for the structural inhomogeneity of lignin in LCC networks. Wood Sci. Technol. 51, 1365–1376 (2017)

    Article  Google Scholar 

  53. Bajpai, P.: Paper and its properties. In: Bajpai, P. (ed.) Biermann’s handbook of pulp and paper, 3rd edn., pp. 35–63. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  54. Dhiman, S.S., Garg, G., Mahajan, R., Garg, N., Sharma, J.: ‘Single lay out’ and ‘mixed lay out’ enzymatic processes for bio-bleaching of kraft pulp. Bioresour. Technol. 100, 4736–4741 (2009)

    Article  Google Scholar 

  55. Shen, W., Chen, X.: Measuring and controlling model of pulp kappa number with spectroscopy during batch sulfite pulping process. Ind. Eng. Chem. Res. 48, 8980–8984 (2009)

    Article  Google Scholar 

  56. Boruah, P., Sarmah, P., Das, P.K., Goswami, T.: Exploring the lignolytic potential of a new laccase producing strain Kocuria sp. PBS-1 and its application in bamboo pulp bleaching. Int. Biodeterior. Biodegrad. 143, 1–12 (2019)

    Article  Google Scholar 

  57. Lin, X., Han, S., Zhang, N., Hu, H., Zheng, S., Ye, Y., Lin, Y.: Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzym. Microb. Technol. 52, 91–98 (2013)

    Article  Google Scholar 

  58. Hamedi, J., Vaez Fakhri, A., Mahdavi, S.: Biobleaching of mechanical paper pulp using Streptomyces rutgersensis UTMC 2445 isolated from a lignocellulose-rich soil. J. Appl. Microbiol. 128, 161–170 (2020)

    Article  Google Scholar 

  59. Birijlall, N., Manimaran, A., Santhosh Kumar, K., Permaul, K., Singh, S.: High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5 L fermenter and its efficiency in biobleaching of bagasse pulp. Bioresour. Technol. 102, 9723–9729 (2011)

    Article  Google Scholar 

  60. Nagar, S., Gupta, V.K.: Hyper production and eco-friendly bleaching of kraft pulp by xylanase from Bacillus pumilus SV-205 using agro waste material. Waste Biomass Valor. (2020). https://doi.org/10.1007/s12649-020-01258-0

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Chiang Mai University (CMU) via a Postdoctoral Fellowship 2019 for Pinpanit Boonchuay (Contract No. 07/2019). We also thank the Faculty of Agro-Industry, CMU, and the cluster of the Agro Bio-Circular-Green Industry (Agro BCG), CMU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanongsak Chaiyaso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Information Consent

Informed consent has been obtained from all individual participants of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiyaso, T., Boonchuay, P., Takenaka, S. et al. Efficient Enzymatic Process for Mulberry Paper Production: An Approach for Xylooligosaccharide Production Coupled with Minimizing Bleaching Agent Doses. Waste Biomass Valor 12, 5347–5360 (2021). https://doi.org/10.1007/s12649-021-01416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01416-y

Keywords

Navigation