Skip to main content

Advertisement

Log in

A Novel Technology for Processing Urban Waste Compost as a Fast-Releasing Nitrogen Source to Improve Soil Properties and Broccoli and Lettuce Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated nitrogen (N) mineralization dynamics in three soils after the addition of heat-treated urban waste amendments or urban waste compost (UWC). The effects of UWC and urea on soil properties and broccoli and lettuce production were compared.

Methods

The first N mineralization experiment was conducted in a factorial arrangement (4 × 3), as a randomized complete block design (RCBD), with three replicates. Four UWC doses: 12.5, 25.0, 37.5, and 50.0 mg dm−3 were applied to three soils: sandy Ustoxic Quartzipsamment (QS), intermediate-texture red Ultisol (US), and clayey red Oxisol (OS), during eight incubation periods (0, 7, 14, 28, 42, 56, 70, and 84 days). In the second experiment, the effects of UWC and urea fertilizer on soil properties were compared. The growth of broccoli and lettuce plants was evaluated (experiments 3 and 4). The treatments (Experiments 2–4) followed a factorial arrangement (4 × 2; RCBD; three replicates), using OS soil. Four N doses (as for experiment 1) were combined with two N sources (UWC and urea).

Results

The processed UWC application proportionally increased the N mineralization rate by 72% in QS, 54% in US, and 66% in OS. Furthermore, UWC application enhanced soil properties (pH and nutrient availability), compared with urea fertilizer, and improved N uptake, resulting in higher fresh biomass production in broccoli and lettuce plants (50.0 and 37.5 mg dm−3, respectively).

Conclusions

Our findings suggest that heat-treated UWC is an economical, viable, and efficient fertilizer to improve soil properties and short-cycle vegetable crop productivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The following information was supplied regarding data availability: Dates of Physicochemical characteristics of the studied soils and heat-treated urban waste compost, and the parameter values for calculation of the N mineralization rate are provided in the Supplemental Files.

References

  1. Roy, T.K., Saroar, M.M., Haque, S.M.: Use of Co-compost from faecal sludge and Municipal organic waste in urban green space plantation of Khulna City: prospects and problems. In: Ghosh, S. (ed.) Waste Valorisat. Recycl., pp. 179–191. Springer Singapore, Singapore (2019)

    Chapter  Google Scholar 

  2. Glaesner, N., van der Bom, F., Bruun, S., McLaren, T., Larsen, F.H., Magid, J.: Phosphorus characterization and plant availability in soil profiles after long-term urban waste application. Geoderma 338, 136–144 (2019). https://doi.org/10.1016/J.GEODERMA.2018.11.046

    Article  Google Scholar 

  3. Patwa, A., Parde, D., Dohare, D., Vijay, R., Kumar, R.: Solid waste characterization and treatment technologies in rural areas: an Indian and international review. Environ. Technol. Innov. 20, (2020). https://doi.org/10.1016/j.eti.2020.101066

    Article  Google Scholar 

  4. Melikoglu, M.: Reutilisation of food wastes for generating fuels and value added products: a global review. Environ. Technol. Innov. 19, (2020). https://doi.org/10.1016/j.eti.2020.101040

    Article  Google Scholar 

  5. Flavel, T.C., Murphy, D.V.: Carbon and nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 35, 183–193 (2006). https://doi.org/10.2134/jeq2005.0022

    Article  Google Scholar 

  6. Domínguez, M., Paradelo Núñez, R., Piñeiro, J., Barral, M.T.: Physicochemical and biochemical properties of an acid soil under potato culture amended with municipal solid waste compost. Int. J. Recycl. Org. Waste Agric. 8, 171–178 (2019). https://doi.org/10.1007/s40093-019-0246-x

    Article  Google Scholar 

  7. Bhat, S., Singh, S., Singh, J., Kumar, S., Bhawana, B., Vig, A.: Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour. Technol. 252, 172–179 (2018). https://doi.org/10.1016/J.BIORTECH.2018.01.003

    Article  Google Scholar 

  8. Miezah, K., Obiri-Danso, K., Kádár, Z., Fei-Baffoe, B., Mensah, M.Y.: Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag. 46, 15–27 (2015). https://doi.org/10.1016/J.WASMAN.2015.09.009

    Article  Google Scholar 

  9. Liang, B., Yang, X., He, X., Murphy, D.V., Zhou, J.: Long-term combined application of manure and NPK fertilizers influenced nitrogen retention and stabilization of organic C in Loess soil. Plant Soil 353, 249–260 (2012). https://doi.org/10.1007/s11104-011-1028-z

    Article  Google Scholar 

  10. Naderi, R., Edalat, M., Egan, T.P.: Effects of urea nitrogen and residual composted municipal waste and sheep manure on the growth and chemical composition of two triticale genotypes. J. Plant Nutr. 41, 178–185 (2017). https://doi.org/10.1080/01904167.2017.1382527

    Article  Google Scholar 

  11. Chrysargyris, A., Stamatakis, A., Moustakas, K., Prasad, M., Tzortzakis, N.: Evaluation of municipal solid waste compost and/or fertigation as peat substituent for pepper seedlings production. Waste Biomass Valorizat. 9, 2285–2294 (2018). https://doi.org/10.1007/s12649-017-0124-6

    Article  Google Scholar 

  12. Basta, N.T., Ryan, J.A., Chaney, R.L.: Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual. 34, 49–63 (2005). https://doi.org/10.2134/jeq2005.0049dup

    Article  Google Scholar 

  13. Manirakiza, E., Ziadi, N., StLuce, M., Hamel, C., Antoun, H., Karam, A.: Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids. Appl. Soil Ecol. 142, 90–98 (2019). https://doi.org/10.1016/j.apsoil.2019.04.025

    Article  Google Scholar 

  14. Masunga, R.H., Uzokwe, V.N., Mlay, P.D., Odeh, I., Singh, A., Buchan, D., De Neve, S.: Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil. Ecol. 101, 185–193 (2016). https://doi.org/10.1016/j.apsoil.2016.01.006

    Article  Google Scholar 

  15. Manojlović, M., Čabilovski, R., Bavec, M.: Organic materials: sources of nitrogen in the organic production of lettuce. Turkish J. Agric. For. 34, 163–172 (2010). https://doi.org/10.3906/tar-0905-11

    Article  Google Scholar 

  16. Fascella, G., Montoneri, E., Ginepro, M., Francavilla, M.: Effect of urban biowaste derived soluble substances on growth, photosynthesis and ornamental value of Euphorbia x lomi. Sci. Hortic. (Amsterdam) 197, 90–98 (2015). https://doi.org/10.1016/j.scienta.2015.10.042

    Article  Google Scholar 

  17. Carbonell, G., Imperial, R.M., De Torrijos, M., Delgado, M., Rodriguez, J.A.: Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere 85, 1614–1623 (2011). https://doi.org/10.1016/j.chemosphere.2011.08.025

    Article  Google Scholar 

  18. Mantovani, J.R., Ferreira, M.E., da Cruz, M.C.P., Barbosa, J.C., Freiria, A.C.: Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em argissolo. Rev. Bras. Ciência do Solo. 30, 677–684 (2006). https://doi.org/10.1590/S0100-06832006000400008

    Article  Google Scholar 

  19. Cordovil, C.M., Coutinho, D.S., Goss, J., Cabral, F.: Potentially mineralizable nitrogen from organic materials applied to a sandy soil: fitting the one-pool exponential model. Soil Use Manag. 21, 65–72 (2006). https://doi.org/10.1111/j.1475-2743.2005.tb00108.x

    Article  Google Scholar 

  20. Øvsthus, I., Breland, T.A., Hagen, S.F., Brandt, K., Wold, A.B., Bengtsson, G.B., Seljåsen, R.: Effects of organic and waste-derived fertilizers on yield, nitrogen and glucosinolate contents, and sensory quality of broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 63, 10757–10767 (2015). https://doi.org/10.1021/acs.jafc.5b04631

    Article  Google Scholar 

  21. Santos, F.T., Goufo, P., Santos, C., Botelho, D., Fonseca, J., Queirós, A., Costa, M.S.S.M., Trindade, H.: Comparison of five agro-industrial waste-based composts as growing media for lettuce: effect on yield, phenolic compounds and Vitamin C. Food Chem. 209, 293–301 (2016). https://doi.org/10.1016/j.foodchem.2016.04.087

    Article  Google Scholar 

  22. WRB: World reference base for soil resources 2014 (update 2015), international soil classification system for naming soils and creating legends for soil maps., Rome (2015)

  23. van Raij, B., Andrade, J.C., Cantarella, H., Quaggio, J.: Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas, Campinas (2001)

    Google Scholar 

  24. Embrapa: Manual de métodos de análises químicas de solos. Embrapa-CNPS, Rio de Janeiro (1997)

  25. Abreu, M.F., H., A.J.C., Silva, F.C., Santos, G.C.G., Andrade, J.C., Gomes, T.F., Coscione, A.R., Andrade, C..: Análise química de fertilizantes orgânicos (urbanos). In: Silva, F. (ed.) Manual de análises químicas de solos, plantas e fertilizantes. pp. 397–486. Embrapa Informação Tecnológica, Brasília (2009)

  26. BRASIL: Normas sobre as especificações e as garantias, as tolerâncias, o registro, a embalagem e a rotulagem dos fertilizantes orgânicos simples, mistos, compostos, organominerais e biofertilizantes destinados à agricultura. Ministério da Agricultura Pecuária e Abastecimento, Brazil (2009)

  27. Coscione, A.R., Andrade, C.: Protocolos para a avaliação dinâmica de resíduos orgânicos no solo. In: Andrade, J.C., Abreu, M.F. (eds.) Análise química de resíduos sólidos para monitoramento e estudos agroambientais, pp. 159–177. Campinas, Instituto Agronômico, Campinas (2006)

    Google Scholar 

  28. Cantarella, H., Trivelin, P.C.: Determinação de nitrogênio inorgânico em solo pelo método da destilação a vapor. In: van Raij, B., Andrade, J.C., Cantarella, H., Quaggio, J. (eds.) Análise química para avaliação da fertilidade de solos tropicais, pp. 270–276. Campinas, Instituto Agronômico, Campinas (2011)

    Google Scholar 

  29. Mohanty, M., Reddy, K.S., Probert, M.E., Dalal, R.C., Rao, A.S., Menzies, N.W.: Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Modell. 222, 719–726 (2011). https://doi.org/10.1016/j.ecolmodel.2010.10.027

    Article  Google Scholar 

  30. Azeez, J.O., Van Averbeke, W.: Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresour. Technol. 101, 5645–5651 (2010). https://doi.org/10.1016/j.biortech.2010.01.119

    Article  Google Scholar 

  31. Trani, P.E., Raij, B.: Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico/Fundação IAC, (Boletim Técnico, 100), Campinas (1997)

  32. Bataglia, O.C., Teixeira, J.P.F., Furlani, P.R., Furlani, A.M.C., Gallo, J.R.: Métodos de análise química de plantas. Instituto Agronômico de Campinas, Campinas (1983)

    Google Scholar 

  33. Giusquiani, P.L., Pagliai, M., Gigliotti, G., Businelli, D., Benetti, A.: Urban waste compost: effects on physical, chemical, and biochemical soil properties. J. Environ. Qual. 24, 175 (1995). https://doi.org/10.2134/jeq1995.00472425002400010024x

    Article  Google Scholar 

  34. Mamo, M., Molina, J.A.E., Rosen, C.J., Halbach, T.R.: Nitrogen and carbon mineralization in soil amended with municipal solid waste compost. In: Canadian Journal of Soil Science. pp. 535–542. Agricultural Institute of Canada (1999)

  35. Tognetti, C., Mazzarino, M.J., Laos, F.: Compost of municipal organic waste: effects of different management practices on degradability and nutrient release capacity. Soil Biol. Biochem. 40, 2290–2296 (2008). https://doi.org/10.1016/j.soilbio.2008.05.006

    Article  Google Scholar 

  36. Schmatz, R., Recous, S., Aita, C., Tahir, M.M., Schu, A.L., Chaves, B., Giacomini, S.J.: Crop residue quality and soil type influence the priming effect but not the fate of crop residue C. Plant Soil 414, 229–245 (2017). https://doi.org/10.1007/s11104-016-3120-x

    Article  Google Scholar 

  37. Campos, A., Suárez, M., Laborde, J.: Analyzing vegetation cover-induced organic matter mineralization dynamics in sandy soils from tropical dry coastal ecosystems. Catena. 185, (2020). https://doi.org/10.1016/j.catena.2019.104264

    Article  Google Scholar 

  38. Martínez, J.M., Galantini, J.A., Duval, M.E., Landriscini, M.R., García, R.J., López, F.: Nitrogen mineralization indicators under semi-arid and semi-humid conditions: influence on wheat yield and nitrogen uptake. Commun. Soil Sci. Plant Anal. 49, 1907–1921 (2018). https://doi.org/10.1080/00103624.2018.1485931

    Article  Google Scholar 

  39. Hassink, J., Bouwman, L.A., Zwart, K.B., Bloem, J., Brussaard, L.: Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. In: Soil Structure/Soil Biota Interrelationships. pp. 105–128. Elsevier (1993)

  40. Sigurdarson, J.J., Svane, S., Karring, H.: The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Biotechnol. 17, 241–258 (2018). https://doi.org/10.1007/s11157-018-9466-1

    Article  Google Scholar 

  41. Mehmood, K., Baquy, M.A.-A., Xu, R.: Influence of nitrogen fertilizer forms and crop straw biochars on soil exchange properties and maize growth on an acidic Ultisol. Arch. Agron. Soil Sci. 64, 834–849 (2018). https://doi.org/10.1080/03650340.2017.1385062

    Article  Google Scholar 

  42. Tanong, K., Xu, J., Shon, H.: Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater. Bioresour. Technol. 102, 5337–5344 (2011). https://doi.org/10.1016/J.BIORTECH.2010.12.045

    Article  Google Scholar 

  43. Fitzstevens, M.G., Sharp, R.M., Brabander, D.J.: Biogeochemical characterization of municipal compost to support urban agriculture and limit childhood lead exposure from resuspended urban soils. Elem Sci Anth. 5, 1–14 (2017). https://doi.org/10.1525/elementa.238

    Article  Google Scholar 

  44. Szymański, K., Janowska, B., Sidełko, R.: The estimate of bioavailability of copper, lead and zinc in municipal solid waste and compost. Asian J. Chem. 17, 1646–1660 (2005)

    Google Scholar 

  45. Wong, M.T.F., Nortcliff, S., Swift, R.S.: Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure, and peat applied to tropical soils. Commun. Soil Sci. Plant Anal. 29, 2927–2937 (1998). https://doi.org/10.1080/00103629809370166

    Article  Google Scholar 

  46. Strojaki, T.V., Silva, V.R., Somavilla, A., Da Ros, C.O., Moraes, M.T.: Atributos químicos do solo e produtividade de girassol e milho em função da aplicação de composto de lixo urbano. Pesqui. Agropecuária Trop. 43, 278–285 (2013)

    Article  Google Scholar 

  47. Hamdi, H., Hechmi, S., Khelil, M.N., Zoghlami, I.R., Benzarti, S., Mokni-Tlili, S., Hassen, A., Jedidi, N.: Repetitive land application of urban sewage sludge: effect of amendment rates and soil texture on fertility and degradation parameters. CATENA 172, 11–20 (2019). https://doi.org/10.1016/j.catena.2018.08.015

    Article  Google Scholar 

  48. Zaman, G., Murtaza, B., Imran, M., Shahid, M., Shah, G.M., Amjad, M., Naeem, M.A., Mubeen, M., Murtaza, G.: Utilization of bio-municipal solid waste improves saline-sodic soils and crop productivity in rice-wheat. Compost Sci. Util. (2020). https://doi.org/10.1080/1065657X.2019.1709106

    Article  Google Scholar 

  49. Ernani, P.R., Nascimento, J.A.L., Campos, M.L., Camillo, R.J.: Influência da combinação de fósforo e calcário no rendimento de milho. Rev. Bras. Ciência Solo. 24, 537–544 (2000). https://doi.org/10.1590/s0100-06832000000300007

    Article  Google Scholar 

  50. Noirot-Cosson, P.E., Vaudour, E., Gilliot, J.M., Gabrielle, B., Houot, S.: Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland. Soil Biol. Biochem. 94, 138–153 (2016). https://doi.org/10.1016/j.soilbio.2015.11.014

    Article  Google Scholar 

  51. Maftoun, M., Moshiri, F., Karimian, N., Ronaghi, A.M.: Effects of two organic wastes in combination with phosphorus on growth and chemical composition of spinach and soil properties. J. Plant Nutr. 27, 1635–1651 (2005). https://doi.org/10.1081/PLN-200026005

    Article  Google Scholar 

  52. Erana, F.G., Tenkegna, T.A., Asfaw, S.L.: Effect of agro industrial wastes compost on soil health and onion yields improvements: study at field condition. Int. J. Recycl. Org. Waste Agric. 8, 161–171 (2019). https://doi.org/10.1007/s40093-019-0286-2

    Article  Google Scholar 

Download references

Funding

The project was financially supported by the Centro Universitario da Fundação Educacional de Barretos - UNIFEB – Brasil.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: FON, RMP, HAS, and MGA. Performed the lab experiment: FON, HAS, and MGA. Performed the greenhouse experiments: FON, MGA, ACH, LFP and LASND. Analyzed the data: FON, RMP, HAS, and ACH. All authors discussed the conceptual model and contributed to data interpretation and the writing of the paper.

Corresponding author

Correspondence to Alexander Calero Hurtado.

Ethics declarations

Conflicts of interest

The authors declare there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Nobile, F.O., Calero Hurtado, A., Prado, R.d. et al. A Novel Technology for Processing Urban Waste Compost as a Fast-Releasing Nitrogen Source to Improve Soil Properties and Broccoli and Lettuce Production. Waste Biomass Valor 12, 6191–6203 (2021). https://doi.org/10.1007/s12649-021-01415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01415-z

Keywords

Navigation