Skip to main content
Log in

Exploring the Effective Utilization of Shallot Stalk Waste and Tamarind Seed for Packaging Film Preparation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Owing to the increased generation of agricultural bio-waste especially onion solid waste and its impact on environment, the present study mainly focused on the utilization of selected waste streams such as shallot stalk and tamarind seed for development of packaging films which can be used as an alternative to plastic films.

Methods

Different extraction methods were used for the extraction of xyloglucan (XG). The condition of selected extraction method was optimized by central composite design using response surface methodology. The shallot stalk powder (SSP) packaging film was prepared with extracted XG by casting method. The properties of xyloglucan and SSP packaging film were analyzed and it was compared with commercial pectin based films.

Results

Microwave-assisted extraction (MAE) provided a high yield of 21.75% of xyloglucan compared to other methods with optimum process parameters as power level 400 W, liquid to solid ratio 99.43 ml/g, temperature 83.23 °C and time 14.29 min, respectively. The SSP films have less water vapor permeability 1.06 × 10−10−1.49 × 10−10 g/m. s. Pa, high total phenolic content 63.76–69.23 mg/g and antioxidant capacity 23.47–24.09% compared to the control films.

Conclusion

Thus, the study provides the rational for effective utilization of not only shallot stalk waste, but also other onion solid waste includes flower, petiole and skin in food packaging applications.

Graphicl Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Choi, I.S., Cho, E.J., Moon, J.-H., Bae, H.-J.: Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chem. 188, 537–542 (2015). https://doi.org/10.1016/j.foodchem.2015.05.028

    Article  Google Scholar 

  2. Khiari, Z., Makris, D.P., Kefalas, P.: An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food Bioprocess Technol. 2, 337–343 (2009). https://doi.org/10.1007/s11947-007-0044-8

    Article  Google Scholar 

  3. Chen, L., Teng, H., Xie, Z., Cao, H., Cheang, W.S., Skalicka-, K., Georgiev, M.I., Xiao, J.: Modifications of dietary flavonoids towards improved bioactivity : An update on structure – activity relationship. Crit. Rev. Food Sci. Nutr. (2016). https://doi.org/10.1080/10408398.2016.1196334

    Article  Google Scholar 

  4. Bhosale, Y.K., Varghese, S.M., Thivya, P., Hema, V., Sinija, V.R.: Studies on assessment of safety and nutritional quality of shallot waste fractions. J. Food Process. Preserv. https://doi.org/https://doi.org/10.1111/jfpp.15147

  5. Lang, P., Masci, G., Dentini, M., Crescenzi, V., Universita, C., Sapienza, L., Fanutti, C., Reid, J.S.G.: Tamarind seed polysaccharide : preparation, characterisation and solution properties of carboxylated, sulphated and alkylaminated derivatives. Carbohydr. Polym. 17, 185–198 (1992). https://doi.org/10.1016/0144-8617(92)90003-9

    Article  Google Scholar 

  6. Lu, X., Wang, J., Al-qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A.: Determination of total phenolic content and antioxidant capacity of onion ( Allium cepa ) and shallot ( Allium oschaninii ) using infrared spectroscopy. Food Chem. 129, 637–644 (2011). https://doi.org/10.1016/j.foodchem.2011.04.105

    Article  Google Scholar 

  7. Inneburg, I.R.I.S.H., Eubert, R.E.H.N.: Influence of extraction parameters on the phytochemical characteristics of extracts from buckwheat (fagopyrum esculentum) herb. J. Agric. Food Chem. 53, 3–7 (2005). https://doi.org/10.1021/jf049118f

    Article  Google Scholar 

  8. Kochumalayil, J., Sehaqui, H., Berglund, L.A.: Tamarind seed xyloglucan–a thermostable high-performance biopolymer from non-food feedstock. J. Mater. Chem. (2010). https://doi.org/10.1039/c0jm00367k

    Article  Google Scholar 

  9. Li, L., Shan, H., Yue, C.Y., Lam, Y.C., Tam, K.C., Hu, X.: Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir. 18, 7291–7298 (2002). https://doi.org/10.1021/la020029b

    Article  Google Scholar 

  10. Matta, E., Tavera-Quiroz, M.J., Bertola, N.: Active edible films of methylcellulose with extracts of green apple (Granny Smith) skin. Int. J. Biol. Macromol. 124, 1292–1298 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.114

    Article  Google Scholar 

  11. Alba, K., MacNaughtan, W., Laws, A.P., Foster, T.J., Campbell, G.M., Kontogiorgos, V.: Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocoll. 81, 398–408 (2018). https://doi.org/10.1016/j.foodhyd.2018.03.023

    Article  Google Scholar 

  12. Sharma, K., Ko, E.Y., Assefa, A.D., Ha, S., Nile, S.H., Lee, E.T., Park, S.W.: Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. J. food drug Anal. 23, 243–252 (2015). https://doi.org/10.1016/j.jfda.2014.10.005

    Article  Google Scholar 

  13. Crispín-isidro, G., Hernández-rodríguez, L., Ramírez-santiago, C., Sandoval-castilla, O.: Influence of purification on physicochemical and emulsifying properties of tamarind ( Tamarindus indica L.) seed gum. Food Hydrocoll. 93, 402–412 (2019). https://doi.org/10.1016/j.foodhyd.2019.02.046

    Article  Google Scholar 

  14. Martínez-velasco, A., Lobato-calleros, C., Hernández-, B.E., Román-guerrero, A., Alvarez-ramirez, J., Jaime, E.: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrason. Sonochem. 44, 97–105 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.007

    Article  Google Scholar 

  15. Arlington, V.A.: Association of official analytical chemists (AOAC): official methods of analysis of official analytical chemists international. No. 630.24 A8 1984.1141, 14 Ed (1984)

  16. Regazzoni, L., Saligari, F., Marinello, C., Rossoni, G., Aldini, G., Carini, M., Orioli, M.: Coffee silver skin as a source of polyphenols: High resolution mass spectrometric profiling of components and antioxidant activity. J. Funct. Foods. 20, 472–485 (2016). https://doi.org/10.1016/j.jff.2015.11.027

    Article  Google Scholar 

  17. Al-dhabi, N.A., Ponmurugan, K., Maran, P.: Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. - Sonochemistry. 34, 206-213 (2016).https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.05.005

  18. Choi, B., Koh, E., Frap, D.Á.S.Á.: Spent coffee as a rich source of antioxidative compounds. Food Sci. Biotechnol. 26, 921–927 (2017).https://doi.org/https://doi.org/10.1007/s10068-017-0144-9

  19. Kai, K.C., Lúcia, C., Petkowicz, D.O.: Influence of extraction conditions on properties of seed xyloglucan. Int. J. Biol. Macromol. 46, 223–228 (2010). https://doi.org/10.1016/j.ijbiomac.2009.12.012

    Article  Google Scholar 

  20. Badwaik, L.S.: Valorisation of pumpkin seeds and peels into biodegradable packaging films. Food Bioprod. Process. 118, 58–66 (2020). https://doi.org/10.1016/j.fbp.2019.08.015

    Article  Google Scholar 

  21. Saberi, B., Vuong, Q.V., Chockchaisawasdee, S., Golding, J.B., Scarlett, C.J., Stathopoulos, C.E.: Mechanical and physical properties of pea starch edible films in the presence of glycerol. J. Food Process. Preserv. 40, 1339–1351 (2016). https://doi.org/10.1111/jfpp.12719

    Article  Google Scholar 

  22. Cocoletzi, H.: PT. Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int. J. Biol. Macromol. 126, 1234-1243 (2018). https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.12.196

  23. Jouki, M., Khazaei, N., Ghasemlou, M., Hadinezhad, M.: Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym. 96, 39–46 (2013). https://doi.org/10.1016/j.carbpol.2013.03.077

    Article  Google Scholar 

  24. Badwaik, L.S., Borah, P.K., Deka, S.C.: Antimicrobial and enzymatic antibrowning film used as coating for bamboo shoot quality improvement. Carbohydr. Polym. 103, 213–220 (2014). https://doi.org/10.1016/j.carbpol.2013.12.027

    Article  Google Scholar 

  25. Orsuwan, A., Shankar, S., Wang, L., Sothornvit, R., Rhim, J.: Preparation of antimicrobial agar / banana powder blend fi lms reinforced with silver nanoparticles. Food Hydrocoll. 60, 476–485 (2016). https://doi.org/10.1016/j.foodhyd.2016.04.017

    Article  Google Scholar 

  26. Hanani, Z.A.N., Mahony, J.A.O., Roos, Y.H., Oliveira, P.M., Kerry, J.P.: Extrusion of gelatin-based composite films : Effects of processing temperature and pH of film forming solution on mechanical and barrier properties of manufactured films. Food Packag. Shelf Life. 2, 91–101 (2014). https://doi.org/10.1016/j.fpsl.2014.09.001

    Article  Google Scholar 

  27. Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A.: Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.09.062

    Article  Google Scholar 

  28. Sendra, E.: In vitro antibacterial and antioxidant properties of chitosan edible fi lms incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control. 30, 386–392 (2013). https://doi.org/10.1016/j.foodcont.2012.07.052

    Article  MathSciNet  Google Scholar 

  29. Siripatrawan, U., Harte, B.R.: Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll. 24, 770–775 (2010)

    Article  Google Scholar 

  30. Chawananorasest, K., Saengtongdee, P., Kaemchantuek, P.: Extraction and characterization of tamarind (Tamarind indica L.) seed polysaccharides (tsp) from three difference sources. Molecules. 21, 775 (2016). https://doi.org/10.3390/molecules21060775

    Article  Google Scholar 

  31. Sahraee, S., Milani, J.M., Ghanbarzadeh, B., Hamishehkar, H., Kafil, H.S.: Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int. J. Biol. Macromol. 96, 340–352 (2016). https://doi.org/10.1016/j.ijbiomac.2016.12.066

    Article  Google Scholar 

  32. Flórez, N., Conde, E., Domínguez, H.: Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biotechnol. 90, 590–607 (2014). https://doi.org/10.1002/jctb.4519

    Article  Google Scholar 

  33. Kumar, C.S., Sivakumar, M., Ruckmani, K.: Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities. Int. J. Biol. Macromol. 92, 682–693 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.062

    Article  Google Scholar 

  34. Alpizar-Reyes, E., Román-Guerrero, A., Gallardo-Rivera, R., Varela-Guerrero, V., Cruz-Olivares, J., Pérez-Alonso, C.: Rheological properties of tamarind (Tamarindus indica L.) seed mucilage obtained by spray-drying as a novel source of hydrocolloid. Int. J. Biol. Macromol. 107, 817–824 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.048

    Article  Google Scholar 

  35. Mohammad Zadeh, E., O’Keefe, S.F., Kim, Y.-T.: Lignin-based biopolymeric active packaging system for oil products. J. Food Sci. 84, 1420–1426 (2019). https://doi.org/10.1111/1750-3841.14632

    Article  Google Scholar 

  36. Khalil, H.P.S., Tye, Y.Y., Saurabh, C.K., Leh, C.P., Lai, T.K., Chong, E.W.N., Fazita, M.R., Hafiidz, J.M., Banerjee, A., Syakir, M.I.: Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polym. Lett. 11, 244–265 (2017). https://doi.org/10.3144/expresspolymlett.2017.26

    Article  Google Scholar 

  37. Zhu, F.: Interactions between cell wall polysaccharides and polyphenols. Crit. Rev. Food Sci. Nutr. 58, 8398 (2018). https://doi.org/10.1080/10408398.2017.1287659

    Article  Google Scholar 

  38. Noronha, C.M., de Carvalho, S.M., Lino, R.C., Barreto, P.L.M.: Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem. 159, 529–535 (2014). https://doi.org/10.1016/j.foodchem.2014.02.159

    Article  Google Scholar 

  39. Wu, J., Chen, S., Ge, S., Miao, J., Li, J., Zhang, Q.: Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll. 32, 42–51 (2013). https://doi.org/10.1016/j.foodhyd.2012.11.029

    Article  Google Scholar 

  40. Martins, J.T., Cerqueira, M.A., Vicente, A.A.: In fluence of α-tocopherol on physicochemical properties of chitosan-based fi lms. Food Hydrocoll. 27, 220–227 (2012). https://doi.org/10.1016/j.foodhyd.2011.06.011

    Article  Google Scholar 

  41. Hafsa, J., Smach, M. ali, Ben Khedher, M.R., Charfeddine, B., Limem, K., Majdoub, H., Rouatbi, S.: Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT Food Sci. Technol. 68, 356–364 (2016). https://doi.org/https://doi.org/10.1016/j.lwt.2015.12.050

  42. Sun, L., Sun, J., Chen, L., Niu, P., Yang, X., Guo, Y.: Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr. Polym. 163, 81–91 (2017). https://doi.org/10.1016/j.carbpol.2017.01.016

    Article  Google Scholar 

  43. Adilah, A.N., Jamilah, B., Noranizan, M.A., Hanani, Z.A.N.: Utilization of mango peel extracts on the biodegradable fi lms for active packaging. Food Packag. Shelf Life. 16, 1–7 (2018). https://doi.org/10.1016/j.fpsl.2018.01.006

    Article  Google Scholar 

  44. Sun, X., Wang, Z., Kadouh, H., Zhou, K.: The antimicrobial, mechanical, physical and structural properties of chitosan e gallic acid fi lms. LWT - Food Sci. Technol. 57, 83–89 (2014). https://doi.org/10.1016/j.lwt.2013.11.037

    Article  Google Scholar 

  45. Soledad, M., Elevina, P., Fam, L.: Structural and mechanical properties of edible fi lms made from native and modi fi ed cush-cush yam and cassava starch. Food Hydrocoll. 45, 211–217 (2015). https://doi.org/https://doi.org/10.1016/j.foodhyd.2014.11.017

  46. Ciannamea, E.M., Stefani, P.M., Ruseckaite, R.A.: Properties and antioxidant activity of soy protein concentrate fi lms incorporated with red grape extract processed by casting and compression molding. LWT - Food Sci. Technol. 74, 353–362 (2016). https://doi.org/10.1016/j.lwt.2016.07.073

    Article  Google Scholar 

  47. Shakila, R.J., Jeevithan, E., Varatharajakumar, A., Jeyasekaran, G., Sukumar, D.: Comparison of the properties of multi-composite fish gelatin films with that of mammalian gelatin films. Food Chem. 135, 2260–2267 (2012). https://doi.org/10.1016/j.foodchem.2012.07.069

    Article  Google Scholar 

  48. Norajit, K., Myong, K., Hyung, G.: Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J. Food Eng. 98, 377–384 (2010). https://doi.org/10.1016/j.jfoodeng.2010.01.015

    Article  Google Scholar 

  49. Riaz, A., Lei, S., Muhammad, H., Akhtar, S., Chen, D., Jabbar, S., Abid, M., Hashim, M., Zeng, X.: PT. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 114, 547-555 (2018). https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.03.126

  50. Viana, R.M., Sá, N.M.S.M., Barros, M.O., de Fátima Borges, M., Azeredo, H.M.C.: Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydr. Polym. 196, 27–32 (2018). https://doi.org/https://doi.org/10.1016/j.carbpol.2018.05.017

  51. Rodsamran, P., Sothornvit, R.: Lime peel pectin integrated with coconut water and lime peel extract as a new bioactive fi lm sachet to retard soybean oil oxidation. Food Hydrocoll. 97, 105173 (2019). https://doi.org/10.1016/j.foodhyd.2019.105173

    Article  Google Scholar 

  52. Albishi, T., John, J.A., Al-Khalifa, A.S., Shahidi, F.: Antioxidative phenolic constituents of skins of onion varieties and their activities. J. Funct. Foods. 5, 1191–1203 (2013). https://doi.org/10.1016/j.jff.2013.04.002

    Article  Google Scholar 

  53. Kam, W.-Y.J., Mirhosseini, H., Abas, F., Hussain, N., Hedayatnia, S., Chong, H.-L.F.: Antioxidant activity enhancement of biodegradable film as active packaging utilizing crude extract from durian leaf waste. Food Control. 90, 66–72 (2018). https://doi.org/10.1016/j.foodcont.2018.02.036

    Article  Google Scholar 

  54. Jaisan, C., Punbusayakul, N.: Development of coffee pulp extract-incorporated chitosan film and its antimicrobial and antioxidant activities. Asia Pac J Sci Technol. 21, 140–149 (2016). https://doi.org/https://doi.org/10.14456/kkurj.2016.17

  55. Kongjao, S., Damronglerd, S.: Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J. Chem. Eng. 27, 944–949 (2010). https://doi.org/10.1007/s11814-010-0148-0

    Article  Google Scholar 

  56. Gómez-ordóñez, E., Rupérez, P.: FTIR-ATR spectroscopy as a tool for polysaccharide identi fi cation in edible brown and red seaweeds. Food Hydrocoll. 25, 1514–1520 (2011). https://doi.org/10.1016/j.foodhyd.2011.02.009

    Article  Google Scholar 

  57. Schulz, H., Baranska, M.: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. J. Vib Spec. 43, 13–25 (2007). https://doi.org/10.1016/j.vibspec.2006.06.001

    Article  Google Scholar 

  58. Cristina, H., Fertonani, R., Scabio, A., Canteri, M.H.: Influence of acid concentration on extraction and quality of apple pomace pectin. Semina: Ciências Agrárias, Londrina. 599–612. http://ri.uepg.br:8080/riuepg//handle/123456789/250.

Download references

Acknowledgements

The authors acknowledge Ministry of Food Processing Industries (MoFPI), Govt. of India for funding the research work and Indian Institute of Food Processing Technology, Thanjavur for providing the facilities to conduct the study successfully.

Author information

Authors and Affiliations

Authors

Contributions

The present work was conceived, supervised, reviewed and edited by VRNS. Conceptualization, investigation, data collection and original-draft writing were performed by PT and BYK. SA and VH reviewed and edited the manuscript. All authors were analyzed the results and approved the final manuscript.

Corresponding author

Correspondence to V. R. Sinija.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the study and all authors approved the submission of the work to Journal of Waste and Biomass Valorization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thivya, P., Bhosale, Y.K., Anandakumar, S. et al. Exploring the Effective Utilization of Shallot Stalk Waste and Tamarind Seed for Packaging Film Preparation. Waste Biomass Valor 12, 5779–5794 (2021). https://doi.org/10.1007/s12649-021-01402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01402-4

Keywords

Profiles

  1. V. R. Sinija