Skip to main content
Log in

Pan Pelletization of Bone Char Fertilizer: An Evaluation of Process Parameters and Their Effect on Granule Strength

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Rock phosphorous (P) resource reduction, a high-cost increment of fertilizer bears pressure for developing countries' small-scale farmers. Extracting P from slaughterhouse waste through pyrolysis and producing bone char is a promising solution, although handling of bone char is an issue. Thus, the objective of this research was, to produce bone char fertilizer granules to avoid wide size variation of bone char particles, easy handling and transportation, and easy application of the bone char fertilizer. Primarily, bone char used for pelletization was produced in wood-fueled, barrel type pyrolysis kiln, and the samples were ground into a powder (0.25 mm) subsequently. Then, pelletization was done using DP-14 model pelletizer and using 5% solution of Corn starch as a binder. To produce the durable bone char pellet, more than 50 trials have been conducted and above 200 samples passed through different testing. Therefore, this research asserts, durable bone char fertilizer granule can be produced and the granulation technique is the possible way to produce bone char fertilizer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cordell, D., Drangert, J.O., White, S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. (2009). https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  2. Cordell, D., Rosemarin, A., Schröder, J.J., Smit, A.L.: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere (2011). https://doi.org/10.1016/j.chemosphere.2011.02.032

    Article  Google Scholar 

  3. Simons, A., Solomon, D., Chibssa, W., Blalock, G., Lehmann, J.: Filling the phosphorus fertilizer gap in developing countries. Nat. Geosci. 7(3), 3 (2014)

    Article  Google Scholar 

  4. Warren, G.P., Robinson, J.S., Someus, E.: Dissolution of phosphorus from animal bone char in 12 soils. Nutr. Cycl. Agroecosyst. (2009). https://doi.org/10.1007/s10705-008-9235-6

    Article  Google Scholar 

  5. Zwetsloot, M.J., Lehmann, J., Solomon, D.: Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J. Sci. Food Agric. 95, 281–288 (2015). https://doi.org/10.1002/jsfa.6716

    Article  Google Scholar 

  6. Dilz, K., Van Brakel, G., Richards, I.: Effects of uneven fertiliser spreading on crop yield and quality: a literature review. In: Proceedings of the International Fertiliser Society, Proceeding No. 240). York, UK, 1985

  7. Klock, K.A., Taber, H.G.: Comparison of bone products for phosphorus availability. Horttechnology. (1996). https://doi.org/10.21273/horttech.6.3.257

    Article  Google Scholar 

  8. Vassilev, N., Martos, E., Mendes, G., Martos, V., Vassileva, M.: Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? Animal biochar solubilisation. J. Sci. Food Agric. 93(8), 1799–1804 (2013). https://doi.org/10.1002/jsfa.6130

    Article  Google Scholar 

  9. Reynolds, G.K., Fu, J.S., Cheong, Y.S., Hounslow, M.J., Salman, A.D.: Breakage in granulation: a review. Chem. Eng. Sci. 60(14), 3969–3992 (2005). https://doi.org/10.1016/j.ces.2005.02.029

    Article  Google Scholar 

  10. Mangwandi, C., Albadarin, A.B., JiangTao, L., Allen, S., Walker, G.M.: Development of a value-added soil conditioner from high shear co-granulation of organic waste and limestone powder. Powder Technol. (2014). https://doi.org/10.1016/j.powtec.2013.10.039

    Article  Google Scholar 

  11. Mangwandi, C., Albadarin, A.B., Al-Muhtaseb, A.H., Allen, S.J., Walker, G.M.: Optimisation of high shear granulation of multicomponent fertiliser using response surface methodology. Powder Technol. (2013). https://doi.org/10.1016/j.powtec.2012.03.047

    Article  Google Scholar 

  12. Adetayo, A.A., Litster, J.D., Pratsinis, S.E., Ennis, B.J.: Population balance modelling of drum granulation of materials with wide size distribution. Powder Technol. (1995). https://doi.org/10.1016/0032-5910(94)02896-V

    Article  Google Scholar 

  13. Walker, G.M., Holland, C.R., Ahmad, M.N., Fox, J.N., Kells, A.G.: Drum granulation of NPK fertilizers. Powder Technol. (2000). https://doi.org/10.1016/S0032-5910(99)00253-3

    Article  Google Scholar 

  14. Meline, R.S., McCamy, I.W., Graham, J.L., Sloan, T.S.: Plant-scale production of fertilizers in a pan granulator. J. Agric. Food Chem. (1968). https://doi.org/10.1021/jf60156a040

    Article  Google Scholar 

  15. Rahmanian, N., Naji, A., Ghadiri, M.: Effects of process parameters on granules properties produced in a high shear granulator. Chem. Eng. Res. Des. (2011). https://doi.org/10.1016/j.cherd.2010.10.021

    Article  Google Scholar 

  16. Zafari, A., Kianmehr, M.H.: Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste. BioResources (2012). https://doi.org/10.15376/biores.7.4.4704-4714

    Article  Google Scholar 

  17. Walker, G.M., Moursy, H.E.M.N., Holland, C.R., Ahmad, M.N.: Effect of process parameters on the crush strength of granular fertiliser. Powder Technol. (2003). https://doi.org/10.1016/S0032-5910(03)00039-1

    Article  Google Scholar 

  18. Utsumi, R., Hata, T., Hirano, T., Mori, H., Tsubaki, J.I., Maeda, T.: Attrition testing of granules with a tapping sieve. Powder Technol. (2001). https://doi.org/10.1016/S0032-5910(00)00412-5

    Article  Google Scholar 

  19. Bortzmeyer, D., Goimard, J.C.: Mechanical properties and attrition behaviour of CaCO3 powders: influence of particle shape. Powder Technol. (1996). https://doi.org/10.1016/0032-5910(95)03063-8

    Article  Google Scholar 

  20. Reza, M.T., Lynam, J.G., Vasquez, V.R., Coronella, C.J.: Pelletization of biochar from hydrothermally carbonized wood. Environ. Prog. Sustain. Energy. (2012). https://doi.org/10.1002/ep.11615

    Article  Google Scholar 

  21. Veverka, R.J.H.: A comparison of liquid binders for limestone pelletizing. In: Institute for Briquetting and Agglomeration 27th Biennial Conference, Providence, RI, Nov 2002

  22. IFDC: [UNIDO] and fertilizer manual: Google Books. https://books.google.ca/books?printsec=frontcover&vid=LCCN98002861&redir_esc=y#v=onepage&q&f=false (1979)

  23. Utsumi, R., Hirano, T., Mori, H., Tsubaki, J.I., Maeda, T.: An attrition test with a sieve shaker for evaluating granule strength. Powder Technol. (2002). https://doi.org/10.1016/S0032-5910(01)00416-8

    Article  Google Scholar 

  24. Bemrose, C.R., Bridgwater, J.: A review of attrition and attrition test methods. Powder Technol. 49(2), 97–126 (1987)

    Article  Google Scholar 

  25. Jovanovic, V., Knezevic, D., Sekulic, Z., Kragovic, M., Stojanovic, J., Mihajlovic, S., Nisic, D., Radulovic, D., Ivosevic, B., Petrov, M.: Effects of bentonite binder dosage on the properties of green limestone pellets. Hem. Ind. Ind. (2017). https://doi.org/10.2298/hemind160210023j

    Article  Google Scholar 

  26. Albert, K.B., Langford, D.: Pelletizing limestone fines a study of the benefits of pelletized limestone fines in the commercial and agricultural market (laboratory report), p. 9. Mars, Pennsylvania: Mars Mineral (1991)

  27. Rutland, D.W.: Manual for determining physical properties of fertilizer. International Fertilizer Development Center, Muscle Shoals, AL (1986)

    Google Scholar 

  28. Allaire, S.E., Parent, L.E.: Size guide number and Rosin-Rammler approaches to describe particle size distribution of granular organic-based fertilisers. Biosyst. Eng. 86(4), 503–509 (2003). https://doi.org/10.1016/j.biosystemseng.2003.08.009

    Article  Google Scholar 

  29. Antille, D.L., Sakrabani, R., Tyrrel, S.F., Le, M.S., Godwin, R.J.: Development of organomineral fertilisers derived from nutrient-enriched biosolids granules: product specification. In: American Society of Agricultural and Biological Engineers Annual International Meeting 2013, ASABE 2013 (2013)

  30. Miserque, O., Pirard, E.: Segregation of the bulk blend fertilizers. Chemometr. Intell. Lab. Syst. 74(1), 215–224 (2004). https://doi.org/10.1016/j.chemolab.2004.03.017

    Article  Google Scholar 

  31. Henderson, J.: Agronomic Solutions II: Choosing the Right Fertilizer for Your Turf: Methods of Application (2014). https://www.gcsaa.org/docs/default-source/research-and-information/presentations/2014/Methods-of-Application.pdf

  32. Chok, S., Grafton, M., Mills, T., Yule, I.: The variability in New Zealand single superphosphate granule strength and size, and implications for accurate fertiliser application. In: Nutrient management for the farm, catchment and community, pp. 1–14 (2014)

  33. Fogel, R.: Physical variables affecting granulation of superphosphate in rotary granulators operated batchwise. J. Biochem. Toxicol. (1960). https://doi.org/10.1002/jbt.2570100312

    Article  Google Scholar 

  34. Negatu, W., Mwangi, W., Tessema, T.: Cultural Practices and Varietal Preferences for Durum Wheat by Farmers of Ada, Lurne and Gimbichu Weredas of Ethiopia (1994). https://repository.cimmyt.org/xmlui/bitstream/handle/10883/1183/43568.pdf?isAllowed=y&sequence=1

  35. Ghasemi, Y., Kianmehr, M.H., Mirzabe, A.H., Abooali, B.: The effect of rotational speed of the drum on physical properties of granulated compost fertilizer. Physicochem. Probl. Miner. Process. (2013). https://doi.org/10.5277/ppmp130231

    Article  Google Scholar 

  36. Fogel, R.: Physical variables affecting granulation of superphosphate in rotary granulators operated batchwise. J. Appl. Chem. (2007). https://doi.org/10.1002/jctb.5010100312

    Article  Google Scholar 

  37. Irshad, U., Sharif, M.N., Khan, R.U., Rizvi, Z.H.: Granulation of urea in a pan granulator. J. Qual. Technol. Manag. (2008)

  38. Delwel, F., Veer, F.A.: Continuous granulation of sodium triphosphate in a pan granulator. Ind. Eng. Chem. Process Des. Dev. (1978). https://doi.org/10.1021/i260067a009

    Article  Google Scholar 

  39. Antille, D.L., Sakrabani, R., Tyrrel, S.F., Le, M.S., Godwin, R.J.: Characterisation of organomineral fertilisers derived from nutrient-enriched biosolids granules. Appl. Environ. Soil Sci. (2013). https://doi.org/10.1155/2013/694597

    Article  Google Scholar 

  40. Rashid, S., Tefera, N., Minot, N., Ayele, G.: Fertilizer in Ethiopia: an assessment of policies, value chain, and profitability. SSRN Electron. J. (2014). https://doi.org/10.2139/ssrn.2373214

    Article  Google Scholar 

  41. Shoals, M.: Ethiopia fertilizer assessment. Afr. Fertil. Agribus. Partnersh (2012). https://doi.org/10.1021/acs.jmedchem.5b00450

    Article  Google Scholar 

  42. Odeen, K., Noren, J.: Durability of wood pellets. Durab. Build. Mater. Compon. 8(1–4), 780–786 (1999)

    Google Scholar 

  43. Chen, H., Mangwandi, C., Rooney, D.: Production of solid biofuel granules from drum granulation of bio-waste with silicate-based binders. Powder Technol. 354, 231–239 (2019). https://doi.org/10.1016/j.powtec.2019.05.074

    Article  Google Scholar 

  44. Mangwandi, C., JiangTao, L., Albadarin, A.B., Allen, S.J., Walker, G.M.: Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone powder: High Shear wet granulation. Powder Technol. 233, 245–254 (2013). https://doi.org/10.1016/j.powtec.2012.09.017

    Article  Google Scholar 

  45. Hardesty, J.O., Ross, W.H.: Factors affecting granulation of fertilizer mixtures. Ind. Eng. Chem. (1938). https://doi.org/10.1021/ie50342a013

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the McKnight Foundation “Indigenous bio-fertilizer development for agroecological intensification of sustainable enset-legume-cereal production in South and Southwestern Ethiopian smallholder farming system” as well as Cornell University and Jimma University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henok Atile Kibret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibret, H.A., Nesin, B. Pan Pelletization of Bone Char Fertilizer: An Evaluation of Process Parameters and Their Effect on Granule Strength. Waste Biomass Valor 12, 5599–5610 (2021). https://doi.org/10.1007/s12649-021-01387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01387-0

Keywords