Skip to main content
Log in

Near Infrared (NIR) Spectroscopy as a Tool to Assess Blends Composition and Discriminate Antioxidant Activity of Olive Pomace Cultivars

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Currently, monovarietal olive oils are increasingly present on the market and generate large amounts of monovarietal olive pomaces. Considering the high production of this by-product and its bioactive content, it is essential to explore green, reliable, easy-to-go, and low-cost techniques that allow their easy analysis and discrimination. In this sense, the goal of this work was to use near infrared (NIR) spectroscopy to assess the composition and to estimate the antioxidant activity of olive pomace.

Methods

A total of 53 samples including four monovarietal cultivars (Arbequina, Arbosana, Koroneiki and Oliana) and 49 different blends were used for this study. The antioxidant activity was evaluated through ferric reducing antioxidant power (FRAP), total phenolic content (TPC) and the 2,2-diphenyl-1-picrylhydazyl radical (DPPH·) scavenging ability. The NIR spectra of olive samples were calibrated against these chemical parameters and the composition of each sample using PLS modelling. The discrimination of the olive pomace samples with a high amount of bioactive compounds in terms of TPC, FRAP and DPPH· scavenging ability was performed through PLSDA modelling.

Results

The PLS models results regarding olive pomace samples composition yielded coefficients of determination of prediction (R2P) and range error ratio (RER) values higher than 0.9 and 12, respectively, while the PLS models results for the determination of the antioxidant activity yielded unsatisfactory results. For the PLSDA models, the percentage of correct predictions obtained using the validation set was 82, 90, 61% for DPPH· scavenging ability, TPC and FRAP, respectively.

Conclusions

Globally, the obtained results attest that NIR spectroscopy is an interesting green analytical technique for the valorization of olive industry by-products, namely olive pomace, through the determination of their composition and the discrimination between samples with a higher amount of bioactive compounds.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. dos Santos, C.A.T., Pascoa, R., Lopes, J.A.: A review on the application of vibrational spectroscopy in the wine industry: from soil to bottle. Trac-Trends Anal. Chem. 88, 100–118 (2017). https://doi.org/10.1016/j.trac.2016.12.012

    Article  Google Scholar 

  2. Pascoa, R., Magalhaes, L.M., Lopes, J.A.: FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: Application to assessment of antioxidant properties. Food Res. Int. 51(2), 579–586 (2013). https://doi.org/10.1016/j.foodres.2013.01.035

    Article  Google Scholar 

  3. Pascoa, R., Machado, S., Magalhaes, L.M., Lopes, J.A.: Value adding to red grape pomace exploiting eco-friendly FT-NIR spectroscopy technique. Food Bioprocess Technol. 8(4), 865–874 (2015). https://doi.org/10.1007/s11947-014-1454-z

    Article  Google Scholar 

  4. Barros, A.S., Nunes, A., Martins, J., Delgadillo, I.: Determination of oil and water in olive and olive pomace by NIR and multivariate analysis. Sens. Instrum. Food Qual. Saf. 3(3), 180–186 (2009). https://doi.org/10.1007/s11694-009-9083-3

    Article  Google Scholar 

  5. Giovenzana, V., Beghi, R., Romaniello, R., Tamborrino, A., Guidetti, R., Leone, A.: Use of visible and near infrared spectroscopy with a view to on-line evaluation of oil content during olive processing. Biosyst. Eng. 172, 102–109 (2018). https://doi.org/10.1016/j.biosystemseng.2018.06.001

    Article  Google Scholar 

  6. Mata-Sanchez, J., Perez-Jimenez, J.A., Diaz-Villanueva, M.J., Serrano, A., Nunez-Sanchez, N., Lopez-Gimenez, F.J.: Corrosive properties prediction from olive byproducts solid biofuel by near infrared spectroscopy. Energy Fuels 28(8), 5136–5143 (2014). https://doi.org/10.1021/ef500854z

    Article  Google Scholar 

  7. Muik, B., Lendl, B., Molina-Diaz, A., Perez-Villarejo, L., Ayora-Canada, M.J.: Determination of oil and water content in olive pomace using near infrared and Raman spectrometry A comparative study. Anal. Bioanal. Chem. 379(1), 35–41 (2004). https://doi.org/10.1007/s00216-004-2493-5

    Article  Google Scholar 

  8. Pizzi, A., Toscano, G., Pedretti, E.F., Duca, D., Rossini, G., Mengarelli, C., Ilari, A., Renzi, A., Mancini, M.: Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy. Energy 147, 51–58 (2018). https://doi.org/10.1016/j.energy.2018.01.035

    Article  Google Scholar 

  9. Nunes, M.A., Costa, A.S.G., Bessada, S., Santos, J., Puga, H., Alves, R.C., Freitas, V., Oliveira, M.B.P.P.: Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid- and water-soluble components. Sci. Total Environ. 644, 229–236 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.350

    Article  Google Scholar 

  10. Araújo, M., Pimentel, F.B., Alves, R.C., Oliveira, M.B.P.P.: Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxidants. Trends Food Sci. Technol. 45(2), 200–211 (2015). https://doi.org/10.1016/j.tifs.2015.06.010

    Article  Google Scholar 

  11. Chanioti, S., Tzia, C.: Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 48, 228–239 (2018). https://doi.org/10.1016/j.ifset.2018.07.001

    Article  Google Scholar 

  12. Macedo, G.A., Santana, A.L., Crawford, L.M., Wang, S.C., Dias, F.F.G., Bell, J.M.L.N.M.: Integrated microwave-and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT-Food Sci. Technol. 138, 110621 (2021). https://doi.org/10.1016/j.lwt.2020.110621

    Article  Google Scholar 

  13. De Bruno, A., Romeo, R., Fedele, F.L., Sicari, A., Piscopo, A., Poiana, M.: Antioxidant activity shown by olive pomace extracts. J. Environ. Sci. Health B 53(8), 526–533 (2018). https://doi.org/10.1080/03601234.2018.1462928

    Article  Google Scholar 

  14. Albahari, P., Jug, M., Radić, K., Jurmanović, S., Brnčić, M., Brnčić, S.R., Vitali Čepo, D.: Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction. LWT-Food Sci. Technol. 92, 22–31 (2018). https://doi.org/10.1016/j.lwt.2018.02.011

    Article  Google Scholar 

  15. Goldsmith, C.D., Vuong, Q.V., Stathopoulos, C.E., Roach, P.D., Scarlett, C.J.: Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT-Food Sci. Technol. 89, 284–290 (2018). https://doi.org/10.1016/j.lwt.2017.10.065

    Article  Google Scholar 

  16. Bansal, R., Dhiman, A.: Nutraceuticals: a comparative analysis of regulatory framework in different countries of the World. Endocr. Metab. Immune Disord. Drug Targets 20(10), 1654–1663 (2020). https://doi.org/10.2174/1871530320666200519084415

    Article  Google Scholar 

  17. Costa, A.S.G., Alves, R.C., Vinha, A.F., Costa, E., Costa, C.S.G., Nunes, M.A., Almeida, A.A., Santos-Silva, A., Oliveira, M.: Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 267, 28–35 (2018). https://doi.org/10.1016/j.foodchem.2017.03.106

    Article  Google Scholar 

  18. Naes, T., Isaksson, T., Fearn, T., Davies, T.: Interpreting PCR and PLS solutions. A user-friendly guide to multivariate calibration and classification 1, 39-54 (2004).

  19. Barker, M., Rayens, W.: Partial least squares for discrimination. J. Chemometr. 17(3), 166–173 (2003). https://doi.org/10.1002/cem.785

    Article  Google Scholar 

  20. Geladi, P., Kowalski, B.R.: Partial least-squares regression - a tutorial. Anal. Chim. Acta 185, 1–17 (1986). https://doi.org/10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  21. Pascoa, R., Moreira, S., Lopes, J.A., Sousa, C.: Citrus species and hybrids depicted by near- and mid-infrared spectroscopy. J. Sci. Food Agric. 98(10), 3953–3961 (2018). https://doi.org/10.1002/jsfa.8918

    Article  Google Scholar 

  22. Pascoa, R., Lopo, M., dos Santos, C.A.T., Graca, A.R., Lopes, J.A.: Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves. Comput. Electron. Agric. 127, 15–25 (2016). https://doi.org/10.1016/j.compag.2016.05.014

    Article  Google Scholar 

  23. Connor, D.J., Gomez-del-Campo, M., Rousseaux, M.C., Searles, P.S.: Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 169, 71–93 (2014). https://doi.org/10.1016/j.scienta.2014.02.010

    Article  Google Scholar 

  24. Dabbou, S., Dabbou, S., Chehab, H., Brahmi, F., Taticchi, A., Servili, M., Hammami, M.: Chemical composition of virgin olive oils from Koroneiki cultivar grown in Tunisia with regard to fruit ripening and irrigation regimes. Int. J. Food Sci. Technol. 46(3), 577–585 (2011). https://doi.org/10.1111/j.1365-2621.2010.02520.x

    Article  Google Scholar 

  25. Vossen, P.: Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42(5), 1093–1100 (2007). https://doi.org/10.21273/hortsci.42.5.1093

    Article  Google Scholar 

  26. Pereira, C., Freitas, A.M.C., Cabrita, M.J., Garcia, R.: Assessing tyrosol and hydroxytyrosol in Portuguese monovarietal olive oils: Revealing the nutraceutical potential by a combined spectroscopic and chromatographic techniques - based approach. LWT-Food Sci. Technol. 118, 7 (2020). https://doi.org/10.1016/j.lwt.2019.108797

    Article  Google Scholar 

  27. Talhaoui, N., Gomez-Caravaca, A.M., Leon, L., De la Rosa, R., Fernandez-Gutierrez, A., Segura-Carretero, A.: From olive fruits to olive oil: phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. Int. J. Mol. Sci. 17(3), 14 (2016). https://doi.org/10.3390/ijms17030337

    Article  Google Scholar 

  28. Rambo, M.K.D., Amorim, E.P., Ferreira, M.M.C.: Potential of visible-near infrared spectroscopy combined with chemometrics for analysis of some constituents of coffee and banana residues. Anal. Chim. Acta 775, 41–49 (2013). https://doi.org/10.1016/j.aca.2013.03.015

    Article  Google Scholar 

  29. Ayora-Canada, M.J., Muik, B., Garcia- Mesa, J.A., Ortega-Calderon, D., Molina-Diaz, A.: Fourier-transform near-infrared spectroscopy as a tool for olive fruit classification and quantitative analysis. Spectr. Lett. 38(6), 769–785 (2005). https://doi.org/10.1080/00387010500316106

    Article  Google Scholar 

  30. Saha, U., Jackson, D.: Analysis of moisture, oil, and fatty acid composition of olives by near-infrared spectroscopy: development and validation calibration models. J. Sci. Food Agric. 98(5), 1821–1831 (2018). https://doi.org/10.1002/jsfa.8658

    Article  Google Scholar 

  31. Rodriguez-Saona, L.E., Fry, F.S., McLaughlin, M.A., Calvey, E.M.: Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydr. Res. 336(1), 63–74 (2001). https://doi.org/10.1016/s0008-6215(01)00244-0

    Article  Google Scholar 

  32. Olszowy-Tomczyk, M.: Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 19(1), 63–103 (2020). https://doi.org/10.1007/s11101-019-09658-4

    Article  Google Scholar 

  33. Malapert, A., Reboul, E., Loonis, M., Dangles, O., Tomao, V.: Direct and rapid profiling of biophenols in olive pomace by UHPLC-DAD-MS. Food Anal. Methods 11(4), 1001–1010 (2018). https://doi.org/10.1007/s12161-017-1064-2

    Article  Google Scholar 

  34. Ribeiro, T.B., Costa, C.M., Bonifácio - Lopes, T., Silva, S., Veiga, M., Monforte, A.R., Nunes, J., Vicente, A.A., Pintado, M.: Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocoll. 112, 106312 (2021). https://doi.org/10.1016/j.foodhyd.2020.106312

    Article  Google Scholar 

  35. Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., Napolitano, A.: Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Nutr. Front. (2020). https://doi.org/10.3389/fnut.2020.00060

    Article  Google Scholar 

  36. Revilla, I., Vivar-Quintana, A.M., Gonzalez-Martin, I., Escuredo, O., Seijo, C.: The potential of near infrared spectroscopy for determining the phenolic, antioxidant, color and bactericide characteristics of raw propolis. Microchem J. 134, 211–217 (2017). https://doi.org/10.1016/j.microc.2017.06.006

    Article  Google Scholar 

  37. Wu, D., Chen, J.Y., Lu, B.Y., Xiong, L.N., He, Y., Zhang, Y.: Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract. Food Chem. 135(4), 2147–2156 (2012). https://doi.org/10.1016/j.foodchem.2012.07.011

    Article  Google Scholar 

  38. Xia, F.B., Li, C.C., Zhao, N., Li, H., Chang, Q., Liu, X.M., Liao, Y.H., Pan, R.L.: Rapid determination of active compounds and antioxidant activity of Okra seeds using Fourier Transform Near Infrared (FT-NIR) spectroscopy. Molecules 23(3), 10 (2018). https://doi.org/10.3390/molecules23030550

    Article  Google Scholar 

  39. Tresserra-Rimbau, A., Lamuela-Raventos, R.M., Moreno, J.J.: Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem. Pharmacol. 156, 186–195 (2018). https://doi.org/10.1016/j.bcp.2018.07.050

    Article  Google Scholar 

  40. Cozzolino, D., Kwiatkowski, M.J., Parker, M., Cynkar, W.U., Dambergs, R.G., Gishen, M., Herderich, M.J.: Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy. Anal. Chim. Acta 513(1), 73–80 (2004). https://doi.org/10.1016/j.aca.2003.08.066

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to SOVENA Group (Portugal) for kindly providing the olive pomace samples.

Funding

This work has received financial support from Portuguese national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior) through grant UIDB/50006/2020 and through AgriFood XXI I&D&I project (NORTE-01-0145-FEDER-000041) cofinanced by European Regional Development Fund (ERDF), through the NORTE 2020 (Programa Operacional Regional do Norte 2014/2020). R. Páscoa thanks to FCT for funding through program DL 57/2016 -Norma transitória. M. A. Nunes and R. C. Alves are also grateful to FCT for the PhD grant SFRH/BD/130131/2017 and CEECIND/01120/2017 contract, respectively.

Author information

Authors and Affiliations

Authors

Contributions

RNMJP—conceptualization, methodology, investigation, formal analysis, writing—original draft; MAN—conceptualization, methodology, investigation, formal analysis, writing—original draft; FR—investigation; ASGC—methodology, investigation, resources; MBPPO—conceptualization, funding acquisition, writing—review and editing, supervision; RCA—conceptualization, formal analysis, writing—review and editing, supervision.

Corresponding author

Correspondence to Ricardo N. M. J. Páscoa.

Ethics declarations

Conflict of interest

All authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páscoa, R.N.M.J., Nunes, M.A., Reszczyński, F. et al. Near Infrared (NIR) Spectroscopy as a Tool to Assess Blends Composition and Discriminate Antioxidant Activity of Olive Pomace Cultivars. Waste Biomass Valor 12, 4901–4913 (2021). https://doi.org/10.1007/s12649-021-01386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01386-1

Keywords

Navigation