Skip to main content
Log in

A Sustainable Transparent Packaging Material from the Arecanut Leaf Sheath

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Synthetic, non-degradable packaging materials have become a severe environmental threat, and therefore the demand is growing for environmentally friendly materials for sustainable packaging.

Methods

This study presents a feasible method of developing a novel, sustainable packaging material using the Arecanut leaf sheath (ALS). CarboxyMethyl Cellulose was coated on the material for improving its mechanical properties. The results were compared with those of polythene: the most commonly used packaging material.

Results

The novel material has an areal density of 132.5 g per square meter and 1 mm thickness. The material also possesses a tearing strength of approximately 71% of polythene and exhibits approximately 5% elongation at failure. The bursting strength of the material was found to be three times higher (0.3 kg/cm2) than that of polythene (0.1 kg/cm2). The constitutive behaviour of the material was found to be orthotropic. The breaking force of the material was approximately 70% and 22% of polythene in lengthwise and widthwise directions, respectively. The transmittance of the material varied from 54 to 68% in the visible spectrum. Novel material shows a good thermal stability where initial degradation occurred in the temperature range of 200–375 °C.The tensile behaviour was also numerically modelled using the commercial finite element code LS-DYNA. The predicted stress–strain behaviour of the novel material by the numerical model is in close agreement with experimental results.

Conclusion

ALS holds promise as a raw material in the development of transparent, sustainable packaging materials for a wide array of applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davis, G., Song, J.H.: Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crops Prod. 23, 147–161 (2006). https://doi.org/10.1016/j.indcrop.2005.05.004

    Article  Google Scholar 

  2. Hurley, B.R.A., Ouzts, A., Fischer, J., Gomes, T.: PAPER PRESENTED AT IAPRI WORLD CONFERENCE 2012 Effects of Private and Public Label Packaging on Consumer Purchase Patterns. Packag. Technol. Sci. 29, 399–412 (2013). https://doi.org/10.1002/pts

    Article  Google Scholar 

  3. Masilamani, D., Srinivasan, V., Ramachandran, R.K., Gopinath, A., Madhan, B., Saravanan, P.: Sustainable packaging materials from tannery trimming solid waste: a new paradigm in wealth from waste approaches. J. Clean. Prod. 164, 885–891 (2017). https://doi.org/10.1016/j.jclepro.2017.06.200

    Article  Google Scholar 

  4. de la Caba, K., Guerrero, P., Trung, T.S., Cruz-Romero, M., Kerry, J.P., Fluhr, J., Maurer, M., Kruijssen, F., Albalat, A., Bunting, S., Burt, S., Little, D., Newton, R.: From seafood waste to active seafood packaging: an emerging opportunity of the circular economy. J. Clean. Prod. 208, 86–98 (2019). https://doi.org/10.1016/j.jclepro.2018.09.164

    Article  Google Scholar 

  5. Dissanayake, D.G.K., Weerasinghe, D.U., Wijesinghe, K.A.P., Kalpage, K.M.D.M.P.: Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manag. 79, 356–361 (2018)

    Article  Google Scholar 

  6. Hahladakis, J.N., Iacovidou, E.: Closing the loop on plastic packaging materials: what is quality and how does it affect their circularity? Sci. Total Environ. 630, 1394–1400 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.330

    Article  Google Scholar 

  7. Yadav, A., Mangaraj, S., Singh, R., Das, K., Kumar, N., Arora, S.: Biopolymers as packaging material in food and allied industry. Int. J. Chem. Stud. 6, 2411–2418 (2018)

    Google Scholar 

  8. Abdul Khalil, H.P.S., Davoudpour, Y., Saurabh, C.K., Hossain, M.S., Adnan, A.S., Dungani, R., Paridah, M.T., Mohamed, Z.I.S., Fazita, M.R.N., Syakir, M.I., Haafiz, M.K.M.: A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew. Sustain. Energy Rev. 64, 823–836 (2016). https://doi.org/10.1016/j.rser.2016.06.072

    Article  Google Scholar 

  9. Halley, P.J., Dorgan, J.R.: Next-generation biopolymers: advanced functionality and improved sustainability. MRS Bull. 36, 687–691 (2011). https://doi.org/10.1557/mrs.2011.180

    Article  Google Scholar 

  10. Demirbas, A.: Biodegradable plastics from renewable resources. Energy Sources Part A Recover Util. Environ. Eff. 29, 419–424 (2007). https://doi.org/10.1080/009083190965820

    Article  Google Scholar 

  11. Weerasinghe, D.U., Perera, S., Dissanayake, D.G.K.: Application of biomimicry for sustainable functionalization of textiles: review of current status and prospectus. Textile Res. J. 89, 4282 (2019)

    Article  Google Scholar 

  12. Rhim, J.W., Ng, P.K.W.: Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr. 47, 411–433 (2007). https://doi.org/10.1080/10408390600846366

    Article  Google Scholar 

  13. Meherishi, L., Narayana, S.A., Ranjani, K.S.: Sustainable packaging for supply chain management in the circular economy: a review. J. Clean. Prod. 237, 117582 (2019). https://doi.org/10.1016/j.jclepro.2019.07.057

    Article  Google Scholar 

  14. Liliani, Tjahjono, B., Cao, D.: Advancing bioplastic packaging products through co-innovation: a conceptual framework for supplier-customer collaboration. J. Clean. Prod. 252, 119861 (2020). https://doi.org/10.1016/j.jclepro.2019.119861

    Article  Google Scholar 

  15. Gupta, A.P., Sharma, M.: Characterization of biodegradable packaging films derived from potato starch and LDPE grafted with maleic anhydride-LDPE composition. Part-II. J. Polym. Environ. 18, 492–499 (2010). https://doi.org/10.1007/s10924-010-0214-z

    Article  Google Scholar 

  16. Elanthikkal, S., Francis, T., Akhtar, S.: Utilization of areca nut leaf sheath fibers for the extraction of cellulose whiskers. J. Nat. Fibers. 00, 1–13 (2019). https://doi.org/10.1080/15440478.2019.1689885

    Article  Google Scholar 

  17. Thielemans, W., Warbey, C.R., Walsh, D.A.: Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem. 11, 531–537 (2009). https://doi.org/10.1039/b818056c

    Article  Google Scholar 

  18. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010). https://doi.org/10.1021/cr900339w

    Article  Google Scholar 

  19. Garrido, T., Etxabide, A., Leceta, I., Cabezudo, S., De La Caba, K., Guerrero, P.: Valorization of soya by-products for sustainable packaging. J. Clean. Prod. 64, 228–233 (2014). https://doi.org/10.1016/j.jclepro.2013.07.027

    Article  Google Scholar 

  20. Sadasivuni, S., Bhat, R., Pallem, C.: Recycling potential of organic wastes of arecanut and cocoa in India: a short review. Environ. Technol. Rev. 4, 91–102 (2015). https://doi.org/10.1080/09593330.2015.1077897

    Article  Google Scholar 

  21. Nagaraja, R., Gurumurthy, B.R., Shivanna, M.B.: Bio softening of arecanut waste areca husk, leaf and leaf sheath for value added compost. IMPACT Int. J. Res. Appl. Nat. Soc. Sci. 2, 105–112 (2014)

    Google Scholar 

  22. Poddar, P., Islam, M., Sultana, S., Nur, H., Chowdhury, A.: Mechanical and thermal properties of short arecanut leaf sheath fiber reinforced polypropyline composites: TGA, DSC and SEM analysis. J. Mater. Sci. Eng. (2016). https://doi.org/10.4172/2169-0022.1000270

    Article  Google Scholar 

  23. Shashikumar, S., Shrinivasa, D.J., Manjunatha, K., Anantachar, M.: Physical properties of arecanut sheath. Int. J. Agric. Sci. 8, 3378–3380 (2016)

    Google Scholar 

  24. Loganathan, T.M., Sultan, M.T.H., Jawaid, M., Md Shah, A.U., Ahsan, Q., Mariapan, M., Majid, M.S., Bin, A.: Physical, thermal and mechanical properties of areca fibre reinforced polymer composites—an overview. J. Bionic Eng. 17, 185–205 (2020). https://doi.org/10.1007/s42235-020-0015-6

    Article  Google Scholar 

  25. Poddar, P., Sultana, S., Akbar, A., Nur, H.P., Am, S.C.: Environmentally sustainability of short Areca-nut leaf sheath fiber reinforced polypropylene composites. J Poly. Sci. 2, 46–49 (2018)

    Google Scholar 

  26. Kalita, P., Dixit, U.S., Mahanta, P., Saha, U.K.: A novel energy efficient machine for plate manufacturing from areca palm leaf sheath. J. Sci. Ind. Res. (India) 67, 807–811 (2008)

    Google Scholar 

  27. Ginkel, C.G., Gayton, S.: The biodegradability and nontoxicity of carboxymethyl cellulose (DS 0.7) and intermediates. Environ. Toxicol. Chem. 15, 270–274 (1996)

    Article  Google Scholar 

  28. Zhang, L., Zhang, G., Lu, J., Liang, H.: Preparation and characterization of carboxymethyl cellulose/polyvinyl alcohol blend film as a potential coating material. Polym. - Plast. Technol. Eng. 52, 163–167 (2013). https://doi.org/10.1080/03602559.2012.734361

    Article  Google Scholar 

  29. Chi, K., Catchmark, J.M.: Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocoll. 80, 195–205 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.003

    Article  Google Scholar 

  30. Laurent, J.B., De Buzzaccarini, F., De Clerck, K., Demeyere, H., Labeque, R., Lodewick, R., Van Langenhove, L.: Laundry cleaning of textiles. Handb. Clean. Decontamin. Surf. 1, 57–102 (2007). https://doi.org/10.1016/B978-044451664-0/50003-6

    Article  Google Scholar 

  31. Hämäläinen, H., Aksela, R., Rautiainen, J., Sankari, M., Renvall, I., Paquet, R.: Silicate-free peroxide bleaching of mechanical pulps: efficiency of polymeric stabilizers. Int. Mech. Pulping Conf. 1, 215–236 (2007)

    Google Scholar 

  32. Weerasinghe, D., Mohotti, D., Anderson, J.: Numerical Modelling of the Rate-sensitive Behaviour of High-performance Fabrics. J. Dyn. Behav. Mater. (2020). https://doi.org/10.1007/s40870-020-00274-4

    Article  Google Scholar 

  33. Weerasinghe, D., Mohotti, D., Anderson, J.: Incorporation of shear thickening fluid effects into computational modelling of woven fabrics subjected to impact loading: a review. Int. J. Prot. Struct. (2019). https://doi.org/10.1177/2041419619889071

    Article  Google Scholar 

  34. Poddar, P., Asadulah Asad, M., Saiful Islam, M., Sultana, S., Parvinnur, H., Chowdhury, A.M.S.: Mechanical and morphological study of arecanut leaf sheath (ALS), coconut leaf sheath (CLS) and coconut stem fiber (CSF). Adv. Mater. Sci. 1, 1–4 (2016)

    Article  Google Scholar 

  35. Shi, Z., Xu, G., Deng, J., Dong, M., Murugadoss, V., Liu, C., Shao, Q., Wu, S., Guo, Z.: Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chem. Lett. Rev. 12, 235–243 (2019). https://doi.org/10.1080/17518253.2019.1627428

    Article  Google Scholar 

  36. Liu, Q., Wang, C., Guo, Y., Peng, C., Narayanan, A., Kaur, S., Xu, Y., Weiss, R.A., Joy, A.: Opposing effects of side-chain flexibility and hydrogen bonding on the thermal, mechanical, and rheological properties of supramolecularly cross-linked polyesters. Macromolecules 51, 9294–9305 (2018). https://doi.org/10.1021/acs.macromol.8b01781

    Article  Google Scholar 

  37. Sadeghifar, H., Ragauskas, A.: Lignin as a UV light blocker—a review. Polymers (Basel) 12, 1134 (2020). https://doi.org/10.3390/polym12051134

    Article  Google Scholar 

  38. Kong, L., Zhao, Z., He, Z., Yi, S.: Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis × E. urophylla. Results Phys. 7, 914–919 (2017). https://doi.org/10.1016/j.rinp.2017.02.017

    Article  Google Scholar 

  39. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  40. Narayanan, M., Loganathan, S., Valapa, R.B., Thomas, S., Varghese, T.O.: UV protective poly(lactic acid)/rosin films for sustainable packaging. Int. J. Biol. Macromol. 99, 37–45 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.152

    Article  Google Scholar 

  41. Kaewprachu, P., Osako, K., Benjakul, S., Tongdeesoontorn, W., Rawdkuen, S.R.: Biodegradable protein-based films and their properties: a comparative study. Packag. Technol. Sci. 29, 77–90 (2016). https://doi.org/10.1002/pts

    Article  Google Scholar 

  42. Leceta, I., Guerrero, P., De La Caba, K.: Functional properties of chitosan-based films. Carbohydr. Polym. 93, 339–346 (2013). https://doi.org/10.1016/j.carbpol.2012.04.031

    Article  Google Scholar 

  43. Ndegwa, N.G., Ndiritu, F.G., Hussein, G.S.A., Kamweru, P.K., Kagia, J.K., Muthui, Z.W.: Reflectance, transmittance and absorptance of HDPE, LDPE, glass and sand layer used in a SAH. Int. J. Appl. Phys. Math. 4, 406–416 (2014)

    Article  Google Scholar 

  44. Gonzalez-Gutierrez, J., Partal, P., Garcia-Morales, M., Gallegos, C.: Development of highly-transparent protein/starch-based bioplastics. Bioresour. Technol. 101, 2007–2013 (2010). https://doi.org/10.1016/j.biortech.2009.10.025

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. K. Dissanayake.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissanayake, D.G.K., Weerasinghe, D., Perera, T.D.R. et al. A Sustainable Transparent Packaging Material from the Arecanut Leaf Sheath. Waste Biomass Valor 12, 5725–5742 (2021). https://doi.org/10.1007/s12649-021-01382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01382-5

Keywords

Navigation