Skip to main content

Advertisement

Log in

A Sustainable Strategy for Medium-Density Fiberboards Preparation from Waste Hybrid Pennisetum Straws

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The remaining waste residues of crops such as straws are considered a sustainable material that can be used in the manufacture of medium-density fiberboards (MDF). The hybrid Pennisetum straw has a high cellulose content, which gives it the potential to be used as a sustainable material in the manufacturing of MDF. In this study, a hot-pressing method was used to obtain MDF with a density of 650 kg m−3 and a thickness of 15 mm from hybrid Pennisetum straws. The effect of pressing temperatures on the thermal stability and physical properties of the obtained MDF was discussed. The results showed that the MDF obtained by hot pressing at 195 °C for 7.5 min had the optimum physical properties, which contained a static bending strength of 12.33 MPa, a nail holding force of 1313 N, and an elastic modulus of 2572 MPa. The mechanism of interfacial adhesion between fiber and resin was investigated. It was found that increasing the pressing temperature not only promoted the curing of the urea–formaldehyde resin, but also promoted the degradation of hemicellulose and lignin inside the straws.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Susaeta, A., Lal, P., Alavalapati, J., Mercer, E.: Random preferences towards bioenergy environmental externalities: a case study of woody biomass based electricity in the Southern United States. Energy Econ. 33(6), 1111–1118 (2011). https://doi.org/10.1016/j.eneco.2011.05.015

    Article  Google Scholar 

  2. Huaranca, L.L., Iribarnegaray, M.A., Albesa, F., Volante, J.N., Brannstrom, C., Seghezzo, L.: Social perspectives on deforestation, land use change, and economic development in an expanding agricultural frontier in northern Argentina. Ecol. Econ. 165, 106424 (2019). https://doi.org/10.1016/j.ecolecon.2019.106424

    Article  Google Scholar 

  3. Ooba, M., Fujita, T., Mizuochi, M., Fujii, M., Machimura, T., Matsui, T.: Sustainable Use of Regional Wood Biomass in Kushida River Basin, Japan. Waste Biomass Valoriz. 3(4), 425–433 (2012). https://doi.org/10.1007/s12649-012-9157-z

    Article  Google Scholar 

  4. Sannigrahi, S., Zhang, Q., Joshi, P.K., Sutton, P.C., Keesstra, S., Roy, P.S., Pilla, F., Basu, B., Wang, Y., Jha, S., Paul, S.K., Sen, S.: Examining effects of climate change and land use dynamic on biophysical and economic values of ecosystem services of a natural reserve region. J. Clean. Prod. 257, 120424 (2020). https://doi.org/10.1016/j.jclepro.2020.120424

    Article  Google Scholar 

  5. Nordhaus, I., Toben, M., Fauziyah, A.: Impact of deforestation on mangrove tree diversity, biomass and community dynamics in the Segara Anakan lagoon, Java, Indonesia: a ten-year perspective. Estuar. Coast. Shelf Sci. 227, 106300 (2019). https://doi.org/10.1016/j.ecss.2019.106300

    Article  Google Scholar 

  6. Lee, B.-H., Kim, H.-S., Kim, S., Kim, H.-J., Lee, B., Deng, Y., Feng, Q., Luo, J.: Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter. Constr. Build. Mater. 25(7), 3044–3050 (2011). https://doi.org/10.1016/j.conbuildmat.2011.01.004

    Article  Google Scholar 

  7. Koebel, B.M., Levet, A.L., Phu, N.V., Purohoo, I., Guinard, L.: Productivity, resource endowment and trade performance of the wood product sector. J. For. Econ. 22, 24–35 (2016). https://doi.org/10.1016/j.jfe.2015.10.004

    Article  Google Scholar 

  8. Asdrubali, F., Ferracuti, B., Lombardi, L., Guattari, C., Evangelisti, L., Grazieschi, G.: A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 114, 307–332 (2017). https://doi.org/10.1016/j.buildenv.2016.12.033

    Article  Google Scholar 

  9. Baskaran, M., Hashim, R., Sulaiman, O., Awalludin, M.F., Sudesh, K., Arai, T., Kosugi, A.: Properties of particleboard manufactured from oil palm trunk waste using polylactic acid as a natural binder. Waste Biomass Valoriz. 10(1), 179–186 (2019). https://doi.org/10.1007/s12649-017-0026-7

    Article  Google Scholar 

  10. Basalp, D., Tihminlioglu, F., Sofuoglu, S.C., Inal, F., Sofuoglu, A.: Utilization of municipal plastic and wood waste in industrial manufacturing of wood plastic composites. Waste Biomass Valoriz. (2020). https://doi.org/10.1007/s12649-020-00986-7

    Article  Google Scholar 

  11. Ates, B., Koytepe, S., Ulu, A., Gurses, C., Thakur, V.K.: Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120(17), 9304–9362 (2020). https://doi.org/10.1021/acs.chemrev.9b00553

    Article  Google Scholar 

  12. Liao, J.J., Abd Latif, N.H., Trache, D., Brosse, N., Hussin, M.H.: Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 162, 985–1024 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.168

    Article  Google Scholar 

  13. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 33 (2020). https://doi.org/10.3389/fchem.2020.0039211

    Article  Google Scholar 

  14. Marinho, N.P., Nascimento, E.M., Nisgoski, S., Valarelli, I.D.: Some physical and mechanical properties of medium-density fiberboard made from giant bamboo. Mater. Res. 16(6), 1387–1392 (2013). https://doi.org/10.1590/s1516-14392013005000127

    Article  Google Scholar 

  15. Akgul, M., Tozluoglu, A.: Utilizing peanut husk (Arachis hypogaea L.) in the manufacture of medium-density fiberboards. Bioresour. Technol. 99(13), 5590–5594 (2008). https://doi.org/10.1016/j.biortech.2007.10.041

    Article  Google Scholar 

  16. Ramos, D., El Mansouri, N.E., Ferrando, F., Salvado, J.: All-lignocellulosic fiberboard from steam exploded Arundo donax L. Molecules 23(9), 2088 (2018). https://doi.org/10.3390/molecules23092088

    Article  Google Scholar 

  17. Zhang, W., Sun, H., Zhu, C., Wan, K., Zhang, Y., Fang, Z., Ai, Z.: Mechanical and water-resistant properties of rice straw fiberboard bonded with chemically-modified soy protein adhesive. RSC Adv. 8(27), 15188–15195 (2018). https://doi.org/10.1039/c7ra12875d

    Article  Google Scholar 

  18. Liu, R., Long, L., Sheng, Y., Xu, J., Qiu, H., Li, X., Wang, Y., Wu, H.: Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 141, 111732 (2019). https://doi.org/10.1016/j.indcrop.2019.111732

    Article  Google Scholar 

  19. Lühr, C., Pecenka, R., Budde, J., Hoffmann, T., Gusovius, H.-J.: Comparative investigations of fibreboards resulting from selected hemp varieties. Ind. Crops Prod. 118, 81–94 (2018). https://doi.org/10.1016/j.indcrop.2018.03.031

    Article  Google Scholar 

  20. Theng, D., Arbat, G., Delgado-Aguilar, M., Ngo, B., Labonne, L., Evon, P., Mutjé, P.: Comparison between two different pretreatment technologies of rice straw fibers prior to fiberboard manufacturing: Twin-screw extrusion and digestion plus defibration. Ind. Crops Prod. 107, 184–197 (2017). https://doi.org/10.1016/j.indcrop.2017.05.049

    Article  Google Scholar 

  21. Theng, D., Arbat, G., Delgado-Aguilar, M., Vilaseca, F., Ngo, B., Mutjé, P.: All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind. Crops Prod. 76, 166–173 (2015). https://doi.org/10.1016/j.indcrop.2015.06.046

    Article  Google Scholar 

  22. Park, B.-D., Causin, V.: Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Eur. Polymer J. 49(2), 532–537 (2013). https://doi.org/10.1016/j.eurpolymj.2012.10.029

    Article  Google Scholar 

  23. GB/T 11718-2009. Medium density fibreboard. (2009)

  24. Taylor, B.R., Parkinson, D., Parsons, W.F.J.: Nitrogen and lignin content as predictors of litter decay-rates—a microcosm test. Ecology 70(1), 97–104 (1989). https://doi.org/10.2307/1938416

    Article  Google Scholar 

  25. Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A.: Bioethanol production from rice straw: an overview. Biores. Technol. 101(13), 4767–4774 (2010). https://doi.org/10.1016/j.biortech.2009.10.079

    Article  Google Scholar 

  26. Yokoyama, T., Kadla, J.F., Chang, H.M.: Microanalytical method for the characterization of fiber components and morphology of woody plants. J. Agric. Food Chem. 50(5), 1040–1044 (2002). https://doi.org/10.1021/jf011173q

    Article  Google Scholar 

  27. Carroll, J.P., Finnan, J.: Physical and chemical properties of pellets from energy crops and cereal straws. Biosys. Eng. 112(2), 151–159 (2012). https://doi.org/10.1016/j.biosystemseng.2012.03.012

    Article  Google Scholar 

  28. Bledzki, A.K., Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274 (1999). https://doi.org/10.1016/s0079-6700(98)00018-5

    Article  Google Scholar 

  29. El-Kassas, A.M., Mourad, A.H.I.: Novel fibers preparation technique for manufacturing of rice straw based fiberboards and their characterization. Mater. Des. 50, 757–765 (2013). https://doi.org/10.1016/j.matdes.2013.03.057

    Article  Google Scholar 

  30. Mwaikambo, L.Y., Ansell, M.P.: The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angew. Makromol. Chem. 272, 108–116 (1999)

    Article  Google Scholar 

  31. Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J.M.: Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrol. 107, 323–331 (2014). https://doi.org/10.1016/j.jaap.2014.03.017

    Article  Google Scholar 

  32. Huang, Y., Nair, S.S., Chen, H., Fei, B., Yan, N., Feng, Q.: Lignin-rich nanocellulose fibrils isolated from parenchyma cells and fiber cells of western red cedar bark. ACS Sustain. Chem. Eng. 7(18), 15607–15616 (2019). https://doi.org/10.1021/acssuschemeng.9b03634

    Article  Google Scholar 

  33. de Cademartori, P.H.G., Missio, A.L., Mattos, B.D., Schneid, E., Gatto, D.A.: Physical and mechanical properties and colour changes of fast-growing Gympie messmate wood subjected to two-step steam-heat treatments. Wood Mat. Sci. Eng. 9(1), 40–48 (2014). https://doi.org/10.1080/17480272.2013.853692

    Article  Google Scholar 

  34. Bekhta, P., Niemz, P.: Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5), 539–546 (2003). https://doi.org/10.1515/hf.2003.080

    Article  Google Scholar 

  35. Ali, I., Jayaraman, K., Bhattacharyya, D.: Implications of fiber characteristics and mat densification on permeability, compaction and properties of kenaf fiber panels. Ind. Crops Prod. 61, 293–302 (2014). https://doi.org/10.1016/j.indcrop.2014.07.018

    Article  Google Scholar 

  36. Li, T., Zhang, B., Jiang, S., Zhou, X., Du, G., Wu, Z., Cao, M., Yang, L.: Novel highly branched polymer wood adhesive resin. ACS Sustain. Chem. Eng. 8(13), 5209–5216 (2020). https://doi.org/10.1021/acssuschemeng.9b07732

    Article  Google Scholar 

  37. Ira, J., Hasalová, L., Šálek, V., Jahoda, M., Vystrčil, V.: Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling. Fire Technol. 56(3), 1099–1132 (2019). https://doi.org/10.1007/s10694-019-00922-9

    Article  Google Scholar 

  38. Tarchoun, A.F., Trache, D., Klapotke, T.M.: Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int. J. Biol. Macromol. 138, 837–845 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.176

    Article  Google Scholar 

  39. Beroual, M., Boumaza, L., Mehelli, O., Trache, D., Tarchoun, A.F., Khimeche, K.: Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J. Polym. Environ. (2020). https://doi.org/10.1007/s10924-020-01858-w

    Article  Google Scholar 

  40. Tarchoun, A.F., Trache, D., Klapotke, T.M., Derradji, M., Bessa, W.: Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26(13–14), 7635–7651 (2019). https://doi.org/10.1007/s10570-019-02672-x

    Article  Google Scholar 

  41. Cherif, M.F., Trache, D., Brosse, N., Benaliouche, F., Tarchoun, A.F.: Comparison of the physicochemical properties and thermal stability of organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization. Waste Biomass Valoriz 11(12), 6541–6553 (2020). https://doi.org/10.1007/s12649-020-00955-0

    Article  Google Scholar 

  42. Lee, N., Kwon, O.-J., Chun, B.C., Cho, J.W., Park, J.-S.: Characterization of castor oil/polycaprolactone polyurethane biocomposites reinforced with hemp fibers. Fibers Polym. 10(2), 154–160 (2009). https://doi.org/10.1007/s12221-009-0154-1

    Article  Google Scholar 

  43. Okuda, N., Hori, K., Sato, M.: Chemical changes of kenaf core binderless boards during hot pressing (I): influence of the pressing temperature condition. J. Wood Sci. 52(3), 244–248 (2006). https://doi.org/10.1007/s10086-005-0761-4

    Article  Google Scholar 

  44. Wentzel, M., Rolleri, A., Pesenti, H., Militz, H.: Chemical analysis and cellulose crystallinity of thermally modified Eucalyptus nitens wood from open and closed reactor systems using FTIR and X-ray crystallography. Eur. J. Wood Wood Prod. 77(4), 517–525 (2019). https://doi.org/10.1007/s00107-019-01411-0

    Article  Google Scholar 

  45. Moslemi, A., Zolfagharlou koohi, M., Behzad, T., Pizzi, A.: Addition of cellulose nanofibers extracted from rice straw to urea formaldehyde resin; effect on the adhesive characteristics and medium density fiberboard properties. Int. J. Adhes. Adhes. 99, 102582 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102582

    Article  Google Scholar 

  46. Beroual, M., Trache, D., Mehelli, O., Boumaza, L., Tarchoun, A.F., Derradji, M., Khimeche, K.: Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valoriz. (2020). https://doi.org/10.1007/s12649-020-01198-9

    Article  Google Scholar 

  47. Nguyen, D.M., Grillet, A.-C., Diep, T.M.H., Bui, Q.B., Woloszyn, M.: Influence of thermo-pressing conditions on insulation materials from bamboo fibers and proteins based bone glue. Ind. Crops Prod. 111, 834–845 (2018). https://doi.org/10.1016/j.indcrop.2017.12.009

    Article  Google Scholar 

  48. Araújo Junior, C.P., Coaquira, C.A.C., Mattos, A.L.A., de Souza Filho, M.S.M., Feitosa, J.P.A., de Morais, J.P.S., de Freitas Rosa, M.: Binderless fiberboards made from unripe coconut husks. Waste Biomass Valoriz. 9(11), 2245–2254 (2017). https://doi.org/10.1007/s12649-017-9979-9

    Article  Google Scholar 

  49. Kim, W.-S., Yun, I.-H., Lee, J.-J., Jung, H.-T.: Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography. Int. J. Adhes. Adhes. 30(6), 408–417 (2010). https://doi.org/10.1016/j.ijadhadh.2010.05.004

    Article  Google Scholar 

  50. Sundriyal, P., Pandey, M., Bhattacharya, S.: Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. Int. J. Adhes. Adhes. 101, 102626 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102626

    Article  Google Scholar 

  51. Bao, Z., Gao, M., Sun, Y., Nian, R., Xian, M.: The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. Mater. Biol. Appl. 111, 110796 (2020). https://doi.org/10.1016/j.msec.2020.110796

    Article  Google Scholar 

  52. Chen, T., Wu, Z., Wang, X.A., Wang, W., Huang, D., Wei, Q., Wu, B., Xie, Y.: Hierarchical lamellar aluminophosphate materials with porosity as ecofriendly inorganic adhesive for wood-based boards. ACS Sustain. Chem. Eng. 6(5), 6273–6280 (2018). https://doi.org/10.1021/acssuschemeng.8b00078

    Article  Google Scholar 

  53. Chen, W.-H., Wang, C.-W., Ong, H.C., Show, P.L., Hsieh, T.-H.: Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168 (2019). https://doi.org/10.1016/j.fuel.2019.116168

    Article  Google Scholar 

  54. Yang, H., Li, S., Liu, B., Chen, Y., Xiao, J., Dong, Z., Gong, M., Chen, H.: Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Fuel 267, 117302 (2020). https://doi.org/10.1016/j.fuel.2020.117302

    Article  Google Scholar 

  55. Chen, Y., Dang, B., Jin, C., Chen, B., Sun, Q., Nie, Y.: Bio-inspired layered nanolignocellulose/graphene-oxide composite with high mechanical strength due to borate cross-linking. Ind. Crops Prod. 118, 65–72 (2018). https://doi.org/10.1016/j.indcrop.2018.03.037

    Article  Google Scholar 

  56. van Dam, J.E.G., van den Oever, M.J.A., Keijsers, E.R.P., van der Putten, J.C., Anayron, C., Josol, F., Peralta, A.: Process for production of high density/high performance binderless boards from whole coconut husk. Ind. Crops Prod. 24(2), 96–104 (2006). https://doi.org/10.1016/j.indcrop.2005.03.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors grateful acknowledge the support from the National Natural Science Foundation of China (No. 51904265), the Scientific and Technological Innovation Platform of Fujian Province (2006L2003) and the Education Foundation of Fujian Province (No. JAT170021). The authors would like to thanks DaJieJing Green Materials Co. Ltd. (Guizhou, China) for providing the raw hybrid Pennisetum straws and the production platform.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuqing Huang or Xuetao Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Huang, L., Huang, L. et al. A Sustainable Strategy for Medium-Density Fiberboards Preparation from Waste Hybrid Pennisetum Straws. Waste Biomass Valor 12, 5161–5173 (2021). https://doi.org/10.1007/s12649-021-01367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01367-4

Keywords

Navigation