Skip to main content

Advertisement

Log in

Valorization of Corncob by Hydrolysis-Hydrogenation to Obtain Xylitol Under Mild Conditions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The pretreatment of biomass represents a large energy expenditure in the production of sugar alcohols. Current research efforts are focused on integrating catalytic processes to decrease operating time and reduce energy and raw material consumption. In this work, the hydrolysis-hydrogenation of hemicellulose for xylitol production direct from corncob was studied. It was used two strategies of hydrogenation: H2 gas under pressure, and isopropanol as H2 donor. The importance of the presence of H2SO4 and 5% Ru/C catalyst in the reaction medium was analyzed.

Methods

It was considered the use of H2 pressure (2 MPa) and employing isopropanol (water-isopropanol 1:3) as a source of hydrogen. The reaction products were determined by HPLC.

Results

The 5% Ru/C catalyst was active and selective for the conversion of xylose to xylitol. To promote the hydrolysis of the hemicellulose fraction of the corncob into xylose, the addition of acid was necessary. Under mild conditions (0.1% H2SO4, 413 K), xylose was detected as the main product, indicating the good selectivity of the first hemicellulose conversion step. A xylitol yield was 19% under H2 pressure while with isopropanol 7% was obtained.

Conclusion

The intermediate purification step was eliminated because as xylose was formed it was simultaneously hydrogenated to produce xylitol in the presence of Ru catalyst. Cellulose remained intact in the solid residue and could be used to obtain other products, such as glucose, sorbitol, ethanol, or charcoal.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A.: Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz. 1, 3 (2020). https://doi.org/10.1007/s12649-020-01123-0

    Article  Google Scholar 

  2. Priecel, P., Perez Mejia, J.E., Carà, P.D., Lopez-Sanchez, J.A.: CHAPTER 8: Microwaves in the Catalytic Valorisation of Biomass Derivatives. In: Sustainable Catalysis for Biorefineries. pp. 243–299. Royal Society of Chemistry (2018)

  3. Yamaguchi, A., Mimura, N., Shirai, M., Sato, O.: Cascade utilization of biomass: strategy for conversion of cellulose, hemicellulose, and lignin into useful chemicals. ACS Sustain. Chem. Eng. 7, 10445–10451 (2019). https://doi.org/10.1021/acssuschemeng.9b00786

    Article  Google Scholar 

  4. Ye, X.P., Cheng, L., Ma, H., Bujanovic, B., Goundalkar, M.J., Amidon, T.E.: Biorefinery with Water. In: The Role of Green Chemistry in Biomass Processing and Conversion. pp. 135–180. John Wiley and Sons (2013)

  5. Hassan, S.S., Williams, G.A., Jaiswal, A.K.: Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262, 310–318 (2018). https://doi.org/10.1016/j.biortech.2018.04.099

    Article  Google Scholar 

  6. Dietrich, K., Hernandez-Mejia, C., Verschuren, P., Rothenberg, G., Shiju, N.R.: One-pot selective conversion of hemicellulose to xylitol. Org. Process Res. Dev. 21, 165–170 (2017). https://doi.org/10.1021/acs.oprd.6b00169

    Article  Google Scholar 

  7. Messaoudi, Y., Smichi, N., Bouachir, F., Gargouri, M.: Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste and Biomass Valoriz. 10, 357–367 (2019). https://doi.org/10.1007/s12649-017-0062-3

    Article  Google Scholar 

  8. Negahdar, L., Delidovich, I., Palkovits, R.: Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism. Appl. Catal. B Environ. 184, 285–298 (2016). https://doi.org/10.1016/j.apcatb.2015.11.039

    Article  Google Scholar 

  9. Kumar, R., Wyman, C.E.: The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers. Carbohydr. Res. 343, 290–300 (2008). https://doi.org/10.1016/j.carres.2007.10.022

    Article  Google Scholar 

  10. Taran, O.P., Gromov, N. V., Parmon, V.N.: CHAPTER 2: Catalytic Processes and Catalyst Development in Biorefining. In: Sustainable Catalysis for Biorefineries. pp. 25–64. Royal Society of Chemistry (2018)

  11. Fernández-Rodríguez, J., Erdocia, X., de Hoyos, P.L., Sequeiros, A., Labidi, J.: Catalytic Cascade Transformations of Biomass into Polyols. In: Production of Biofuels and Chemicals with Bifunctional Catalysts. pp. 187–219 (2017)

  12. Climent, M.J., Corma, A., Iborra, S.: Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem. 13, 520–540 (2011). https://doi.org/10.1039/c0gc00639d

    Article  Google Scholar 

  13. Murzin, D., Duque, A., Arve, K., Sifontes, V., Aho, A., Eränen, K., Salmi, T.: Catalytic hydrogenation of sugars. In: Biomass Sugars for Non-Fuel Applications. pp. 89–133 (2015)

  14. Musci, J.J., Montaña, M., Rodríguez-Castellón, E., Lick, I.D., Casella, M.L.: Selective aqueous-phase hydrogenation of glucose and xylose over ruthenium-based catalysts: influence of the support. Mol. Catal. 495, 1–12 (2020). https://doi.org/10.1016/j.mcat.2020.111150

    Article  Google Scholar 

  15. Li, H., Bhadury, P.S., Riisager, A., Yang, S.: One-pot transformation of polysaccharides via multi-catalytic processes. Catal. Sci. Technol. 4, 4138–4168 (2014). https://doi.org/10.1039/c4cy00711e

    Article  Google Scholar 

  16. Li, X., Guo, T., Xia, Q., Liu, X., Wang, Y.: One-pot catalytic transformation of lignocellulosic biomass into alkylcyclohexanes and polyols. ACS Sustain. Chem. Eng. 6, 4390–4399 (2018). https://doi.org/10.1021/acssuschemeng.8b00012

    Article  Google Scholar 

  17. Ribeiro, L.S., Órfão, J.J.M., Pereira, M.F.R.: Screening of catalysts and reaction conditions for the direct conversion of corncob xylan to xylitol. Green Process. Synth. 6, 265–272 (2017). https://doi.org/10.1515/gps-2016-0174

    Article  Google Scholar 

  18. Arumugam, A., Malolan, V.V., Ponnusami, V.: Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste Biomass Valoriz. 1, 3 (2020). https://doi.org/10.1007/s12649-020-00983-w

    Article  Google Scholar 

  19. Zhu, T., Li, P., Wang, X., Yang, W., Chang, H., Ma, S.: Optimization of formic acid hydrolysis of corn cob in xylose production. Korean J. Chem. Eng. 31, 1624–1631 (2014). https://doi.org/10.1007/s11814-014-0073-8

    Article  Google Scholar 

  20. Delgado-Arcaño, Y., Valmaña García, O.D., Mandelli, D., Carvalho, W.A., Magalhães Pontes, L.A.: Xylitol: A review on the progress and challenges of its production by chemical route. Catal. Today. 344, 2–14 (2020). https://doi.org/10.1016/j.cattod.2018.07.060

    Article  Google Scholar 

  21. Ribeiro, L.S., Delgado, J.J., De Melo Órfão, J.J., Ribeiro Pereira, M.F.: A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob xylan). RSC Adv. 6, 95320–95327 (2016). https://doi.org/10.1039/c6ra19666g

    Article  Google Scholar 

  22. Yi, G., Zhang, Y.: One-pot selective conversion of hemicellulose (Xylan) to xylitol under mild conditions. Chemsuschem 5, 1383–1387 (2012). https://doi.org/10.1002/cssc.201200290

    Article  Google Scholar 

  23. Besson, M., Gallezot, P., Pinel, C.: Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014). https://doi.org/10.1021/cr4002269

    Article  Google Scholar 

  24. Morales-Delarosa, S., Campos-Martin, J.M.: Catalytic processes and catalyst development in biorefining. In: Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation. pp. 152–198. Elsevier Ltd. (2014)

  25. Wang, D., Deraedt, C., Ruiz, J., Astruc, D.: Sodium hydroxide-catalyzed transfer hydrogenation of carbonyl compounds and nitroarenes using ethanol or isopropanol as both solvent and hydrogen donor. J. Mol. Catal. A Chem. 400, 14–21 (2015). https://doi.org/10.1016/j.molcata.2015.01.024

    Article  Google Scholar 

  26. Prat, D., Hayler, J., Wells, A.: A survey of solvent selection guides. Green Chem. 16, 4546–4551 (2014). https://doi.org/10.1039/c4gc01149j

    Article  Google Scholar 

  27. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP). (2008)

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Structural Carbohydrates and Lignin in Biomass. Biomass Anal. Technol. Team Lab. Anal. Proced. 1–14 (2008)

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of ash in biomass. NREL Laboratory Analytical Procedure (LAP). Natl. Renew. Energy Lab. (2008). NREL/TP-510-42619

  30. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  31. Sing, K.S.W., Rouquerol, F., Llewellyn, P., Rouquerol, J.: Assessment of Microporosity. In: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications: Second Edition. pp. 303–320 (2013)

  32. Wang, L., Jiang, Y., Li, C., Li, X., Meng, L., Wang, W., Lili W., Mu, X.: Microwave-assisted hydrolysis of corn cob for xylose production in formic acid. ICMREE2011 - Proc. 2011 Int. Conf. Mater. Renew. Energy Environ. 1, 332–335 (2011). https://doi.org/https://doi.org/10.1109/ICMREE.2011.5930824

  33. Cai, B.Y., Ge, J.P., Ling, H.Z., Cheng, K.K., Ping, W.X.: Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production. Biomass Bioenerg. 36, 250–257 (2012)

    Article  Google Scholar 

  34. Wang, G., Lee, J., Zhu, J.Y., Jeffries, T.W.: Dilute acid pretreatment of corncob for efficient sugar production. Appl. Biochem. Biotechnol. 163, 658–668 (2011). https://doi.org/10.1007/s12010-010-9071-4

    Article  Google Scholar 

  35. Jin, L., Zhao, N., Liu, Z., Liao, C., Zheng, X., Zheng, Y.: Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst. Bioprocess Biosyst. Eng. 41, 57–64 (2018). https://doi.org/10.1007/s00449-017-1843-6

    Article  Google Scholar 

  36. Trache, D., Hussin, M.H., Haafiz, M.K.M., Thakur, V.K.: Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 9, 1763–1786 (2017). https://doi.org/10.1039/c6nr09494e

    Article  Google Scholar 

  37. Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M.: Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725 (2010). https://doi.org/10.1016/j.carbpol.2010.03.046

    Article  Google Scholar 

  38. Pereira, P.H.F., Voorwald, H.C.J., Cioffi, M.O.H., Pereira, S.: Preparação e caracterização de materiais híbridos. Polímeros. 22, 88–95 (2012)

    Article  Google Scholar 

  39. Qi, W., He, C., Wang, Q., Liu, S., Yu, Q., Wang, W., Leksawasdi, N., Wang, C., Yuan, Z.: Carbon-based solid acid pretreatment in corncob saccharification: specific xylose production and efficient enzymatic hydrolysis. ACS Sustain. Chem. Eng. 6, 3640–3648 (2018). https://doi.org/10.1021/acssuschemeng.7b03959

    Article  Google Scholar 

  40. Kim, J.S., Lee, Y.Y., Torget, R.W.: Cellulose Hydrolysis Under Extremely Low Sulfuric Acid and High-Temperature Conditions. In: Twenty-Second Symposium on Biotechnology for Fuels and Chemicals. pp. 331–340. Humana Press (2001)

  41. Zhang, Y., Xu, Y., Yue, X., Dai, L., Ni, Y.: Isolation and characterization of microcrystalline cellulose from bamboo pulp through extremely low acid hydrolysis. J. Wood Chem. Technol. 39, 242–254 (2019). https://doi.org/10.1080/02773813.2019.1566365

    Article  Google Scholar 

  42. Salmi, T., Murzin, D.Y., Mäki-Arvela, P., Kusema, B., Holmbom, B., Willför, S., Wärnå, J.: Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts. AIChE J. 60, 1066–1077 (2014)

    Article  Google Scholar 

  43. Saeed, A., Jahan, M.S., Li, H., Liu, Z., Ni, Y., van Heiningen, A.: Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods. Biomass Bioenerg. 39, 14–19 (2012). https://doi.org/10.1016/j.biombioe.2010.08.039

    Article  Google Scholar 

  44. Sádaba Zubiri, I.: Facultad de ciencias Departamento de Química Física Aplicada catalizadores para biorrefinería: obtención de furfural y su transformación a productos de condensación aldólica Memoria para aspirar al grado de doctor, (2012)

  45. Zhang, X., Wilson, K., Lee, A.F.: Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars. Chem. Rev. 116, 12328–12368 (2016). https://doi.org/10.1021/acs.chemrev.6b00311

    Article  Google Scholar 

  46. Benyounes, A., Kacimi, M., Ziyad, M., Serp, P.: Conversion of isopropyl alcohol over Ru and Pd loaded N-doped carbon nanotubes. Chin. J. Catal. 35, 970–978 (2014). https://doi.org/10.1016/S1872-2067(14)60121-2

    Article  Google Scholar 

  47. Jasińska, E., Krzyżyńska, B., Kozłowski, M.: Activated carbon modified with different chemical agents as a catalyst in the dehydration and dehydrogenation of isopropanol. Catal Lett. 125, 145–153 (2008). https://doi.org/10.1007/s10562-008-9536-z

    Article  Google Scholar 

  48. Nishimura, S.: Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley (2001)

  49. Faria, V.W., Almeida, G.C., Mota, C.J.A.: Condensação aldólica de furfural e acetona catalisada por bases orgânicas nitrogenadas: um estudo preliminar de desempenho catalítico visando a produção de bioquerosene de aviação. Quim. Nova. 41, 601–606 (2018). https://doi.org/https://doi.org/10.21577/0100-4042.20170225

  50. Mikkola, J.P., Salmi, T., Sjöholm, R.: Effects of solvent polarity on the hydrogenation of xylose. J. Chem. Technol. Biotechnol. 76, 90–100 (2001). https://doi.org/10.1002/1097-4660(200101)76:1%3c90::AID-JCTB348%3e3.0.CO;2-E

    Article  Google Scholar 

  51. Kobayashi, H., Matsuhashi, H., Komanoya, T., Hara, K., Fukuoka, A.: Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chem. Commun. 47, 2366–2368 (2011). https://doi.org/10.1039/c0cc04311g

    Article  Google Scholar 

  52. Hoang, P.H., Cuong, T.D., Dien, L.Q.: Ultrasound assisted conversion of corncob-derived xylan to furfural under HSO3-ZSM-5 zeolite catalyst. Waste Biomass Valoriz. 1, 3 (2020). https://doi.org/10.1007/s12649-020-01152-9

    Article  Google Scholar 

  53. Salmi, T., Murzin, D., Mäki-Arvela, P., Wärnå, J., Eränen, K., Kumar, N., Mikkola, J.P.: Catalytic Engineering in the Processing of Biomass into Chemicals. In: CYBULSKI, A., MOULIJN, J.A., and STANKIEWICZ, A. (eds.) Novel Concepts in Catalysis and Chemical Reactors: Improving the Efficiency for the Future. pp. 163–188. WILEY-VCH (2010)

  54. Ribeiro, L.S., Órfão, J., Pereira, M.: Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production. Bioresour. Technol. 244, 1173–1177 (2017). https://doi.org/10.1016/j.biortech.2017.08.015

    Article  Google Scholar 

Download references

Acknowledgements

Dedicated to P.H. Dixneuf for his outstanding contribution to organometallic chemistry and catalysis. Y.D.A. thanks to Organization of American States (OAS) and Coimbra Group of Brazilian Universities (GCUB). D. M. and W. A. C thank projects CNPq 309570/2016-6, CNPq 422290/2016-5, CNPq 404843/2018-2, FAPESP 2018/01258-5, 2017/24931-4 and the Sustainable Technologies Unit of UFABC (NuTS). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaimé Delgado-Arcaño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1083 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Arcaño, Y., Mandelli, D., Carvalho, W.A. et al. Valorization of Corncob by Hydrolysis-Hydrogenation to Obtain Xylitol Under Mild Conditions. Waste Biomass Valor 12, 5109–5120 (2021). https://doi.org/10.1007/s12649-021-01348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01348-7

Keywords

Navigation