Oil Recovery from Jalapeño Pepper By-Products and Analysis of the Industrial Scalding Process on Its Nutraceutical Potential


Vegetable by-products represent a valuable source of compounds with biological activity that could be used in food and cosmetics industries. The objective of this work is the valorization through the lipophilic nutraceuticals characterization and in vitro antioxidant activity of Jalapeño pepper industrial by-product oil, and the remainder flour from oil extraction. Jalapeño pepper by-products and whole fruit from two regions: Chihuahua and Sinaloa States from Mexico were obtained from a local industry. From the whole fruit it was prepared a simulated raw by-product, in order to use it to evaluate the effect of industrial scalding process on the by-product. The Jalapeño pepper by-product contain around 22% of oil with important lipophilic nutraceuticals, the oil has a greenness color, and remains attractive concentrations of essential fatty acids, more than 70% of linoleic acid; β-carotene up to 1.85 mg/100 g of oil; α-tocopherol (46.12 mg/100 g of oil) up to four times more than red pepper seeds (C. annuum). Moreover, two and a half and five times more capsaicin and dihydrocapsaicin, respectively, were detected in the oil fraction, than the reported before in no polar extract from whole fruit of C. frutescens. The scalding process reduces the β-carotene, capsaicinoids, and total phenolic content and antioxidant activity of the oil fraction, but despite of this, Jalapeño pepper by-product oil and remainder flour contain bioactive compounds at similar concentrations to previously reports in other peppers. The Jalapeño pepper by-products derived by the food industry have the potential to be used for the recovery of an oil with nutraceutical potential.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Orellana-Escobedo, L., Garcia-Amezquita, L.E., Olivas, G.I., Cervantes-Paz, J.J., Sepulveda, D.R.: Capsaicinoids content and proximate composition of Mexican chili peppers (Capsicum spp.) cultivated in the State of Chihuahua. CyTA J. Food. (2013). https://doi.org/10.1080/19476337.2012.716082

    Article  Google Scholar 

  2. 2.

    SIAP. Servicio de Información Agroalimentaria y Pesquera.: Atlas Agroalimentario. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenProducto.do (2019). Accessed 4 Jan 2020

  3. 3.

    Sandoval-Castro, C.J., Valdez-Morales, M., Perea-Domínguez, X.P., Medina-Godoy, S., Espinosa-Alonso, L.G.: Antioxidant activity of processed and raw seed byproduct from Jalapeño pepper. J. Chem. Biol. Phys. Sci. 4(5), 26–34 (2014)

    Google Scholar 

  4. 4.

    Sandoval-Castro, C.J., Valdez-Morales, M., Oomah, B.D., Gutiérrez-Dorado, R., Medina-Godoy, S., Espinosa-Alonso, L.G.: Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). J. Food Sci. Technol. (2017). https://doi.org/10.1007/s13197-017-2636-2

    Article  Google Scholar 

  5. 5.

    Chouaibi, M., Rezig, L., Hamdi, S., Ferrari, G.: Chemical characteristics and compositions of red pepper seed oils extracted by different methods. Ind. Crops Prod. (2019). https://doi.org/10.1016/j.indcrop.2018.11.030

    Article  Google Scholar 

  6. 6.

    Cervantes-Paz, B., Yahia, E.M., Ornelas-Paz, J.J., Victoria-Campos, C.I., Ibarra-Junquera, V., Pérez-Martínez, J.D., Escalante-Minakata, M.P.: Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.09.060

    Article  Google Scholar 

  7. 7.

    Moreno-Escamilla, J.O., de la Rosa, L.A., López-Díaz, J.A., Rodrigo-García, J., Núñez-Gastélum, J.A., Alvarez-Parilla, E.: Effect of the smoking process and firewood type in the phytochemical content and antioxidant capacity of red Jalapeño pepper during its transformation to chipotle pepper. Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2015.07.031

    Article  Google Scholar 

  8. 8.

    Baenas, N., Belovic, M., Ilic, N., Moreno, D.A., García-Viguera, C.: Industrial use of pepper (Capsicum annuum L.) derived products: technological benefits and biological advantages. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.09.047

    Article  Google Scholar 

  9. 9.

    Gurnani, N., Gupta, M., Mehta, D., Mehta, B.K.: Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). J. Taibah Univ. Sci. (2016). https://doi.org/10.1016/j.jtusci.2015.06.011

    Article  Google Scholar 

  10. 10.

    Ma, Y., Wu, X., Zhao, L., Wang, Y., Liao, X.: Comparison of the compounds and characteristics of pepper seed oil by pressure-assisted, ultrasound-assisted and conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 54, 78–86 (2019). https://doi.org/10.1016/j.ifset.2019.03.011

    Article  Google Scholar 

  11. 11.

    Echave, J., Pereira, A.G., Carpena, M., Prieto, M.A., Simal-Gandara, J.: Capsicum seeds as a source of bioactive compounds: biological properties, extraction systems, and industrial application. In: Dekebo, A. (ed.) Capsicum. IntechOpen, London (2020)

    Google Scholar 

  12. 12.

    Jahan, N., Rahman, K.: Cold pressed capia pepper (Capsicum annuum L.) seed oil. In: Ramadan, M.F. (ed.) Cold pressed oils: green technology, bioactive compounds, functionality, and applications, pp. 440–446. Academic Press, Elsevier, New York (2020)

    Google Scholar 

  13. 13.

    Yilmaz, E., Hüriyet, Z., Arifoglu, N., Dilek Dündar, E.: Functional properties of the capia pepper defatted press cakes. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-016-9602-5

    Article  Google Scholar 

  14. 14.

    Samia Azabou, S., Taheur, F.B., Jridi, M., Bouaziz, M., Nasri, M.: Discarded seeds from red pepper (Capsicum annum) processing industry as a sustainable source of high added-value compounds and edible oil. Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-9857-9

    Article  Google Scholar 

  15. 15.

    Romo-Hualde, A., Yetano-Cunchillos, A.I., González-Ferrero, C., Sáiz-Abajo, M.J., González-Navarro, C.J.: Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2012.01.062

    Article  Google Scholar 

  16. 16.

    El Ksibi, I., Ben, Slama R., Faidi, K., Ben, Ticha M., M´henni, M.K.: Mixture approach for optimizing the recovery of colored phenolics from red pepper (Capsicum annum L.) by-products as potential source of natural dye and assessment of its antimicrobial activity. Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2015.03.017

    Article  Google Scholar 

  17. 17.

    Tae-I, K.: Preparation method of natural condiments prepared by using pepper seed. Patent KR101844130B1 (2018). https://patents.google.com/patent/KR101844130B1/. Accessed 10 Oct 2020

  18. 18.

    Meghvansi, M.K., Siddiqui, S., Khan, M.H., Gupta, V.K., Vairale, M.G., Gogoi, H.K., Singh, L.: Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J. Ethnopharmacol. (2010). https://doi.org/10.1016/j.jep.2010.08.034

    Article  Google Scholar 

  19. 19.

    Fernández-Bedmar, Z., Alonso-Moraga, A.: In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food Chem. Toxicol. (2016). https://doi.org/10.1016/j.fct.2016.10.011

    Article  Google Scholar 

  20. 20.

    Jarret, R.L., Levy, I.J., Potter, T.L., Cermak, S.C.: Seed oil and fatty acid composition in Capsicum spp. J. Food Compos. Anal. (2013). https://doi.org/10.1016/j.jfca.2013.02.005

    Article  Google Scholar 

  21. 21.

    Yilmaz, E., Sevgi Arsunar, E., Aydeniz, B., Güneser, O.: Cold pressed capia pepper seed (Capsicum annuum L.) oils: composition, aroma, and sensory properties. Eur. J. Lipid Sci. Technol. (2015). https://doi.org/10.1002/ejlt.201400276

    Article  Google Scholar 

  22. 22.

    Richard, D., Kefi, K., Barbe, U., Bausero, P., Visioli, F.: Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. (2008). https://doi.org/10.1016/j.phrs.2008.05.002

    Article  Google Scholar 

  23. 23.

    Castillo, R.L., Zepeda, A.B., Short, S.E., Figueroa, E., Bustos-Obregón, E., Farías, J.G.: Protective effects of polyunsaturated fatty acids supplementation against testicular damage induced by intermittent hypobaric hypoxia in rats. J. Biomed. Sci. (2015). https://doi.org/10.1186/s12929-015-0112-8

    Article  Google Scholar 

  24. 24.

    Roohbakhsh, A., Karimi, G., Iranshahi, M.: Carotenoids in the treatment of diabetes mellitus and its complications: a mechanistic review. Biomed. Pharmacother. (2017). https://doi.org/10.1016/j.biopha.2017.04.057

    Article  Google Scholar 

  25. 25.

    Ornelas-Paz, J.J., Martínez-Burrola, J.M., Ruiz-Cruz, S., Santana-Rodríguez, V., Ibarra-Junquera, V., Olivas, G.I., Pérez-Martínez, J.D.: Effect of cooking on the capsaicinoids and phenolics contents of Mexican peppers. Food Chem. (2010). https://doi.org/10.1010/j.foodchem.2009.09.054

    Article  Google Scholar 

  26. 26.

    Álvarez-Parrilla, E., de la Rosa, L.A., Amarowicz, R., Shahidi, F.: Antioxidant activity of fresh and processed Jalapeño and Serrano peppers. J. Agric. Food Chem. (2011). https://doi.org/10.1021/jf103434u

    Article  Google Scholar 

  27. 27.

    Cervantes-Paz, B., Yahia, E.M., Ornelas-Paz, J.J., Gardea-Béjar, A.A., Ibarra-Junquera, V., Pérez-Martínez, J.D.: Effect of heat processing on the profile of pigments and antioxidant capacity of green and red jalapeño peppers. J. Agric. Food Chem. (2012). https://doi.org/10.1021/jf303091u

    Article  Google Scholar 

  28. 28.

    FAO. Food and Agriculture Organization: Global Initiative on Food Loss and Waste Reduction-SAVE FOOD. https://www.unece.org/fileadmin/DAM/trade/agr/meetings/wp.07/2016/FoodLossConf/02_MaryamRez (2017). Accessed 24 Mar 2020

  29. 29.

    Bostanci, H., Ok, S., Yilmaz, E.: Valorization of Capia pepper seeds flour-I: spreadable new products development. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-017-0139-z

    Article  Google Scholar 

  30. 30.

    Rodriguez-Solana, R., Salgado, J.M., Domínguez, J.M., Cortés-Diéguez, S.: Comparison of Soxhlet, accelerated solvent and supercritical fluid extraction techniques for volatile (GC-MS and GC/FID) and phenolic compounds (HPLC-ESI/MS/MS) from Lamiaceae species. Phytochem. Anal. (2015). https://doi.org/10.1002/pca.2537

    Article  Google Scholar 

  31. 31.

    Bannon, C.D., Craske, J.D., Hai, N.T., Harper, N., O´Rourke, K.L.: Analysis of fatty acid methyl esters with high accuracy and reliability II. Methylation of fats and oils with boron trifluoride-methanol. J. Chromatogr. A (1982). https://doi.org/10.1016/S0021-9673(00)84856-6

    Article  Google Scholar 

  32. 32.

    Lavelli, V.: Comparison of the antioxidant activities of extra virgin olive oils. J. Agric. Food Chem. (2002). https://doi.org/10.1021/jf020749o

    Article  Google Scholar 

  33. 33.

    Nurmi, K., Ossipov, V., Haukioja, E., Pihlaja, K.: Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betulapubescenss sp. tortuosa). J. Chem. Ecol. (1996). https://doi.org/10.1007/BF02040093

    Article  Google Scholar 

  34. 34.

    Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., Brighenti, F.: Total antioxidants capacity of plants food, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. (2003). https://doi.org/10.1093/jn/133.9.2812

    Article  Google Scholar 

  35. 35.

    Cardador-Martínez, A., Albores, A., Bah, M., Calderón-Salinas, V., Castaño-Tostado, E., Guevara-González, R., Shimada-Miyasaka, A., Loarca-Piña, G.: Relationship among antimutagenic, antioxidant and enzymatic activities of methanolic extract from common beans (Phaseolus vulgaris L). Plants Foods Hum. Nutr. (2006). https://doi.org/10.1007/s11130-006-0026-4

    Article  Google Scholar 

  36. 36.

    Prior, R.L., Gu, X., Bacchiocca, L., Howard, M., Hampsch-Woodill, D., Huang, B., Ou, R.J.: Assay for hydrophilic and lipophilic antioxidant capacity (Oxygen Radical Absorbance Capacity ORAC-FL) of plasma and other biological and food samples. J. Agric. Food Chem. (2003). https://doi.org/10.1021/jf0262256

    Article  Google Scholar 

  37. 37.

    Kurilich, A.C., Juvik, J.A.: Quantification of carotenoid tocopherol antioxidants in Zea mays. J. Agric. Food Chem. (1999). https://doi.org/10.1021/jf981029d

    Article  Google Scholar 

  38. 38.

    Cerretani, L., Lerma-García, M.J., Herrero-Martínez, J.M., Gallina-Toschi, T., Simó-Alfonso, E.F.: Determination of tocopherols and tocotrienols in vegetable oils by nanoliquid chromatography with ultraviolet-visible detection using a silica monolithic column. J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf9031537

    Article  Google Scholar 

  39. 39.

    Qin, C., Yu, C., Shen, Y., Fang, X., Chen, L., Min, J., et al.: Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. U.S.A. (2014). https://doi.org/10.1073/pnas.140097375111

    Article  Google Scholar 

  40. 40.

    Gu, L.-B., Pang, H.-L., Lu, K.-K., Liu, H.-M., Wang, X.-D., Qin, G.-Y.: Process optimization and characterization of fragant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction. J. Sci. Food Agric. (2017). https://doi.org/10.1002/jsfa.7992

    Article  Google Scholar 

  41. 41.

    Becerra-Herrera, M., Vélez-Martín, A., Ramos-Merchante, A., Ritcher, P., Beltrán, R., Sayago, A.: Characterization and evaluation of phenolic profiles and color as potential discriminating features among Spanish extra virgin olive oils with protected designation of origin. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.08.106

    Article  Google Scholar 

  42. 42.

    de Souza Sora, G.T., Pereira Souza, A.H., Ferreira Zielinski, A.A., Isidoro Haminiuk, C.W., Matsushita, M., Peralta, R.M.: Fatty acid composition of Capsicum genus peppers. Ciȇnc Agrotec. (2015). https://doi.org/10.1590/S1413-70542015000400008

    Article  Google Scholar 

  43. 43.

    Kozƚowska, M., Gruczyńska, E., Ścibisz, I., Rudzińska, : Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.06.102

    Article  Google Scholar 

  44. 44.

    Wen Chang, N., Chao Huang, P.: Comparative effects of polyunsaturated- to saturated fatty acid ratio versus polyunsaturated- and monounsaturated fatty acids to saturated fatty acid ratio on lipid metabolism in rats. Atherosclerosis (1999). https://doi.org/10.1016/s0021-9150(98)00236-6

    Article  Google Scholar 

  45. 45.

    Miller, M., Sorkin, J.D., Mastella, L., Sutherland, A., Rhyne, J., Donnelly, P., et al.: Poly is more effective than monounsaturated fat for dietary management in the metabolic syndrome: the muffin study. J. Clin. Lipidol. (2016). https://doi.org/10.1016/j.jacl.2016.04.011

    Article  Google Scholar 

  46. 46.

    Bersch-Ferreira, A.C., Rodrigues Sampaio, G., Omena Gehringer, M., Ferraz da Silva Torres, E.A., Ross-Fernandez, M.B., Terezada Silva, J., et al.: Association between plasma fatty acids and inflammatory markers in patient with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study. Nutr. J. (2018). https://doi.org/10.1186/s12937-018-0342-1

    Article  Google Scholar 

  47. 47.

    Marangoni, F., Agostoni, C., Borghi, C., Catapano, A.L., Cena, H., Ghiselli, A., et al.: Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis (2020). https://doi.org/10.1016/j.atherosclerosis.2019.11.018

    Article  Google Scholar 

  48. 48.

    Kamarudin, A.A., Mohd. Esa, N., Saad, N., Sayuti, N.H., Razak, N.A.A.: Heat assisted extraction of phenolic compounds from Eleutherine bulbosa (Mill.) bulb and its bioactive profile using response surface methodology. Ind. Crop Prod. (2020). https://doi.org/10.1016/j.indcrop.2019.112064

    Article  Google Scholar 

  49. 49.

    Li, M., Chen, X., Deng, J., Ouyang, D., Wang, D., Liang, Y., et al.: Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127429

    Article  Google Scholar 

  50. 50.

    Lama-Muñoz, A., Contreras, M.M., Espínola, F., Moya, M., Romero, I., Castro, E.: Content of phenolic compounds and manitol in olive leaves extracts from six Spanish cultivars: extraction with the Soxhlet method and pressurized liquids. Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.126626

    Article  Google Scholar 

  51. 51.

    Tuberoso, C.I.G., Jerkowić, I., Maldini, M., Serreli, G.: Phenolic compounds, antioxidant activity, and other characteristics of extra virgin olive oils from Italian autochtonous varieties Tonda di Vilacidro, Tonda di Cagliari, Semidana, and Bosana. J. Chem. (2018). https://doi.org/10.1155/2016/8462741

    Article  Google Scholar 

  52. 52.

    Wahyuni, Y., Ballester, A.R., Sudarmonowati, E., Bino, R., Bovy, A.: Metabolite biodiversity in pepper (Capsicum) fruit of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry (2011). https://doi.org/10.1016/j.phytochem.2011.03.016

    Article  Google Scholar 

  53. 53.

    Provesi, J.G., Dias, C.O., Amante, E.R.: Changes in carotenoids during processing and storage of pumpkin puree. Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2011.03.027

    Article  Google Scholar 

  54. 54.

    Strati, I.F., Oreopoulou, V.: Recovery of carotenoids from tomato processing by-products- a review. Food Res. Int. (2014). https://doi.org/10.1016/j.foodres.2014.09.032

    Article  Google Scholar 

  55. 55.

    Chuyen, H.V., Roach, R.D., Golding, J.B., Parks, S.E., Nguyen, M.H.: Encapsulation of carotenoid-rich oil from Gac peel: optimisation of the encapsulation process using a spray drier and the storage stability of encapsulated powder. Powder Technol. (2019). https://doi.org/10.1016/j.powtec.2018.12.012

    Article  Google Scholar 

  56. 56.

    Run-Yang, Z., Hua-Min, L., Yu-Xiang, M., Xue-De, W.: Characterization of fragrant oil extracted from pepper seed during subcritical propane extraction. LWT-Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2019.04.072

    Article  Google Scholar 

  57. 57.

    Mailer, R.J., Ayton, J., Graham, K.: The influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. J. Am. Oil Chem. Soc. (2010). https://doi.org/10.1007/s11746-010-1608-8

    Article  Google Scholar 

  58. 58.

    de Aguiar, A.C., Sales, L.P., Coutinho, J.P., Barbero, G.F., Godoy, H.T., Martínez, J.: Supercritical carbon dioxide extraction of Capsicum peppers: global yield and capsaicinoid content. J. Supercrit. Fluids (2013). https://doi.org/10.1016/j.supflu.2013.05.008

    Article  Google Scholar 

  59. 59.

    Materska, M., Perucka, I.: Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. (2005). https://doi.org/10.1021/jf035331k

    Article  Google Scholar 

  60. 60.

    Xie, J., Yao, S., Ming, J., Deng, L., Zeng, K.: Variations in chlorophyll and carotenoid content and expression of genes involved in pigment metabolism responses to oleocellosis in citrus fruits. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.08.020

    Article  Google Scholar 

  61. 61.

    Serratosa, M., Lopez-Toledano, A., Merida, J., Medina, M.: Changes in color and phenolic compounds during the raising of grape Cv. Pedro Ximenez. J. Agric. Food Chem. (2008). https://doi.org/10.1021/jf073278k

    Article  Google Scholar 

Download references


The authors wish to thank La Costeña® for provide the Jalapeño pepper by-products and the fresh Jalapeño fruits, and to Dr. Mario Bueno for technical support. Sandoval-Castro, C. J. wants to thank to National Council of Science and Technology (CONACyT) Mexico for the Master scholarship (366832) awarded.


The Research and Postgraduate Secretariat of the National Polytechnic Institute, support this work under the following Financed Projects: SIP-20150897, SIP-20164874, and SIP-20172264.

Author information



Corresponding author

Correspondence to L. G. Espinosa-Alonso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valdez-Morales, M., Sandoval-Castro, C.J., Gutiérrez-Dorado, R. et al. Oil Recovery from Jalapeño Pepper By-Products and Analysis of the Industrial Scalding Process on Its Nutraceutical Potential. Waste Biomass Valor (2021). https://doi.org/10.1007/s12649-020-01323-8

Download citation


  • Industrial by-products
  • Jalapeño pepper
  • Lipophilic nutraceuticals
  • Oil
  • Scalding
  • Valorization