Skip to main content

Advertisement

Log in

Sulfonated Expanded Polystyrene Waste Promotes the (+)-Citronellal Cyclization Reaction: A Sustainable Alternative Process for Biomass Valorization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, sulfonated expanded polystyrene waste (WEPS), obtaining from recycling of the expanded polystyrene (EPS) waste by low-cost sulfonation reaction, were successfully applied as environmentally benign acid solid in the liquid-phase cyclization of (+)-citronellal (1), under mild reaction conditions. (-)-Isopulegol (2) and (+)-neoisopulegol (3) were obtained with a total yield equal to 80%. Products 2 and 3 have direct industrial application in the composition of fragrances and flavorings. (-)-Isopulegol is also used as a synthesis intermediate of (-)-menthol. It was not observed the leaching of acid sites from WEPS to reaction solution, thereby, this process presented heterogeneuos nature. The WEPS was stable in the reaction medium and presented little significant loss of its performance in consecutive reactions of its reuse. In addition, WEPS showed better performance than commercial resin Amberlyst-15, in the same reaction conditions. The use of WPES as acid solid in reactions of industrial interest is an attractive, low-cost and environmentally friendly alternative for application of this material, obtained by recycling EPS waste, for adding value to natural ingredients obtained from biomass.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  1. Sarmiento, A.M., Guzmán, H.L., Morales, G., Romero, D.E., Pataquiva-Mateus, A.Y.: Expanded polystyrene (EPS) and waste cooking oil (WCO): from urban wastes to potential material of construction. Waste Biomass Valoriz. 7, 1245–1254 (2016)

    Article  Google Scholar 

  2. Valverde, I.C., Castilla, L.H., Nuñez, D.F., Rodriguez-Senín, E., De La Mano Ferreira, R.: Development of new insulation panels based on textile recycled fibers. Waste Biomass Valoriz. 4, 139–146 (2013)

    Article  Google Scholar 

  3. Rosmaninho, M.G., Jardim, E., Moura, F.C.C., Ferreira, G.L., Thom, V., Yoshida, M.I., Araujo, M.H., Lago, R.M.: Surface hydrolysis of postconsumer polyethylene terephthalate to produce adsorbents for cationic contaminants. J. Appl. Polym. Sci. 102, 5284–5291 (2006)

    Article  Google Scholar 

  4. de Mendonça, F.G., Rosmaninho, M.G., da Fonseca, P.X., Soares, R.R., Ardisson, J.D., Tristão, J.C., Lago, R.M.: Use of iron and bio-oil wastes to produce highly dispersed Fe/C composites for the photo-Fenton reaction. Environ. Sci. Pollut. Res. 24, 6151–6156 (2017)

    Article  Google Scholar 

  5. Amorim, C.C., Dutra, P.R., Leão, M.M.D., Pereira, M.C., Henriques, A.B., Fabris, J.D., Lago, R.M.: Controlled reduction of steel waste to produce active iron phases for environmental applications. Chem. Eng. J. 209, 645–651 (2012)

    Article  Google Scholar 

  6. Vieira Grossi, C., de Oliveira Jardim, E., de Araújo, M.H., Lago, R.M., da Silva, M.J.: Sulfonated polystyrene: a catalyst with acid and superabsorbent properties for the esterification of fatty acids. Fuel 89, 257–259 (2010)

    Article  Google Scholar 

  7. Negro, V., Ruggeri, B., Fino, D.: Recovery of energy from orange peels through anaerobic digestion and pyrolysis processes after d-limonene extraction. Waste Biomass Valoriz. 9, 1331–1337 (2018)

    Article  Google Scholar 

  8. Santos, E.M., Teixeira, A.P.D.C., Da Silva, F.G., Cibaka, T.E., Araújo, M.H., Oliveira, W.X.C., Medeiros, F., Brasil, A.N., De Oliveira, L.S., Lago, R.M.: New heterogeneous catalyst for the esterification of fatty acid produced by surface aromatization/sulfonation of oilseed cake. Fuel 150, 408–414 (2015)

    Article  Google Scholar 

  9. Karimi, E., Teixeira, I.F., Gomez, A., de Resende, E., Gissane, C., Leitch, J., Jollet, V., Aigner, I., Berruti, F., Briens, C., Fransham, P., Hoff, B., Schrier, N., Lago, R.M., Kycia, S.W., Heck, R., Schlaf, M.: Synergistic co-processing of an acidic hardwood derived pyrolysis bio-oil with alkaline Red Mud bauxite mining waste as a sacrificial upgrading catalyst. Appl. Catal. B Environ. 145, 187–196 (2014)

    Article  Google Scholar 

  10. Mohammadi, P., Tabatabaei, M., Nikbakht, A.M., Farhadi, K., Khatami Far, M., Castaldi, M.J.: Simultaneous energy recovery from waste polymers in biodiesel and improving fuel properties. Waste Biomass Valoriz. 4, 105–116 (2013)

    Article  Google Scholar 

  11. Gutiérrez, C., García, M.T., Gracia, I., De Lucas, A., Rodríguez, J.F.: The selective dissolution technique as initial step for polystyrene recycling. Waste Biomass Valoriz. 4, 29–36 (2013)

    Article  Google Scholar 

  12. Sułkowski, W.W., Wolińska, A., Szołtysik, B., Bajdur, W.M., Sułkowska, A.: Preparation and properties of flocculants derived from polystyrene waste. Polym. Degrad. Stab. 90, 272–280 (2005)

    Article  Google Scholar 

  13. Alonso-Fagúndez, N., Laserna, V., Alba-Rubio, A.C., Mengibar, M., Heras, A., Mariscal, R., Granados, M.L.: Poly-(styrene sulphonic acid): an acid catalyst from polystyrene waste for reactions of interest in biomass valorization. Catal. Today 234, 285–294 (2014)

    Article  Google Scholar 

  14. Tabekh, H., Hassan, M., Kurdi, A., Ajji, Z.: Sulphonation of expanded polystyrene waste with commercial sulphuric acid for potential use in removal of heavy metals from contaminated waters. Polimeri 36(1–2), 11–14 (2015)

    Google Scholar 

  15. Mangalara, S.C.H., Varughese, S.: Green recycling approach to obtain nano- and microparticles from expanded polystyrene waste. ACS Sustain. Chem. Eng. 4, 6095–6100 (2016)

    Article  Google Scholar 

  16. Fu, Z., Jia, J., Li, J., Liu, C.: Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem. Eng. J. 323, 557–564 (2017)

    Article  Google Scholar 

  17. Suresh, R., Antony, J.V., Vengalil, R., Kochimoolayil, G.E., Joseph, R.: Esterification of free fatty acids in non- edible oils using partially sulfonated polystyrene for biodiesel feedstock. Ind. Crops Prod. 95, 66–74 (2017)

    Article  Google Scholar 

  18. Behr, A., Vorholt, A.J.: Homogeneous Catalysis with Renewables. Springer, Cham (2017)

    Book  Google Scholar 

  19. Breitmaier, E.: Terpenes: Flavors, Fragrances, Pharmaca. Pheromones. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006)

    Book  Google Scholar 

  20. Baxter, R., Hastings, N., Law, A., Glass, E.J.: Flavours and Fragrances: Chemistry. Bioprocessing and Sustainability. Springer, Hannover (2008)

    Google Scholar 

  21. Swift, K.A.D. (ed.): Current Topics in Flavours and Fragrances Towards a New Millennium of Discovery. Springer Science+Business Media, B.V., Ashford (1999)

    Google Scholar 

  22. Lenardão, E.J., Botteselle, G.V., de Azambuja, F., Perin, G., Jacob, R.G.: Citronellal as key compound in organic synthesis. Tetrahedron 63, 6671–6712 (2007)

    Article  Google Scholar 

  23. Da Silva, K.A., Robles-Dutenhefner, P.A., Sousa, E.M.B., Kozhevnikova, E.F., Kozhevnikov, I.V., Gusevskaya, E.V.: Cyclization of (+)-citronellal to (-)-isopulegol catalyzed by H 3PW12O40/SiO2. Catal. Commun. 5, 425–429 (2004)

    Article  Google Scholar 

  24. Fuentes, M., Magraner, J., De Las Pozas, C., Roque-Malherbe, R., Pariente, J.P., Corma, A.: Cyclization of Citronellal to Isopulegol by Zeolite Catalysis. Appl. Catal. 47, 367–374 (1989)

    Article  Google Scholar 

  25. Arata, K., Matsuura, C.: Isomerizations of Citronellal to Isopulegol and Geraniol to Linalool Catalyzed by Solid Acids and Bases. Chem. Lett. 18, 1797–1798 (1989)

    Article  Google Scholar 

  26. Yadav, G.D., Nair, J.J.: Novelties of eclectically engineered sulfated zirconia and carbon molecular sieve catalysts in cyclisation of citronellal to isopulegol. Chem. Commun. 2369–2370 (1998).

  27. Aggarwal, V.K., Vennall, G.P., Davey, P.N., Newman, C.: Scandium trifluoromethanesulfonate, an efficient catalyst for the intermolecular carbonyl-ene reaction and the intramolecular cyclisation of citronellal. Tetrahedron Lett. 39, 1997–2000 (1998)

    Article  Google Scholar 

  28. Milone, C., Gangemi, C., Neri, G., Pistone, A., Galvagno, S.: Selective one step synthesis of (-)menthol from (+)citronellal on Ru supported on modified SiO2. Appl. Catal. A Gen. 199, 239–244 (2000)

    Article  Google Scholar 

  29. Kikukawa, Y., Yamaguchi, S., Nakagawa, Y., Uehara, K., Uchida, S., Yamaguchi, K., Mizuno, N.: Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives. J. Am. Chem. Soc. 130, 15872–15878 (2008)

    Article  Google Scholar 

  30. Jimeno, C., Miras, J., Esquena, J.: Hafnia-silica cryogels: Solvent-assisted textural and catalytic control in the citronellal cyclization. ChemCatChem. 6, 2626–2633 (2014)

    Article  Google Scholar 

  31. Müller, P., Wolf, P., Hermans, I.: Insights into the complexity of heterogeneous liquid-phase catalysis: case study on the cyclization of citronellal. ACS Catal. 6, 2760–2769 (2016)

    Article  Google Scholar 

  32. Itoh, H., Maeda, H., Yamada, S., Hori, Y., Mino, T., Sakamoto, M.: Kinetic resolution of citronellal by chiral aluminum catalysts: L-menthol synthesis from citral. Org. Chem. Front. 1, 1107–1115 (2014)

    Article  Google Scholar 

  33. Anikeev, V.I., Il’ina, I.V., Volcho, K.P., Salakhutdinov, N.F.: Cyclization of citronellal in a supercritical solvent in a flow reactor in the presence of Al2O3. Russ. J. Phys. Chem. A. 86, 1917–1919 (2012)

    Article  Google Scholar 

  34. Guo, Y., Gaczyński, P., Becker, K.D., Kemnitz, E.: Sol-gel synthesis and characterisation of nanoscopic FeF3-MgF2heterogeneous catalysts with bi-acidic properties. ChemCatChem. 5, 2223–2232 (2013)

    Article  Google Scholar 

  35. Dongil, A.B., Pastor-Pérez, L., Fierro, J.L.G., Escalona, N., Sepúlveda-Escribano, A.: Effect of the surface oxidation of carbon nanotubes on the selective cyclization of citronellal. Appl. Catal. A Gen. 524, 25–31 (2016)

    Article  Google Scholar 

  36. E. de O. Jardim,: Chemical Modification of Polystyrene Waste for Production of Materials with Application Technological, Federal University of Minas Gerais, 2007.

Download references

Acknowledgements

We acknowledge Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação da Universidade Federal de Ouro Preto (PROPP-UFOP) for the financial support, CAPES for the access to the virtual library containing international journals and Laboratory of Organometallic Catalysis at Universidade Federal de Minas Gerais by GC-MS analysis. The authors wish to thank Maria Helena Araújo for kindly share the WEPS for the studies herein presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Grossi Vieira.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of competing interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M.S.P., Pinto, R.R.S., da Silva Rocha, K.A. et al. Sulfonated Expanded Polystyrene Waste Promotes the (+)-Citronellal Cyclization Reaction: A Sustainable Alternative Process for Biomass Valorization. Waste Biomass Valor 12, 4695–4702 (2021). https://doi.org/10.1007/s12649-020-01319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01319-4

Keywords

Navigation