Skip to main content
Log in

Recovering and Characterizing Phenolic Compounds From Citrus By-Product: A Way Towards Agriculture of Subsistence and Sustainable Bioeconomy

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The valorization of citrus processing waste has a great potential for transition toward a bioeconomy. Hence, the objective of this study was to characterize the phenolic composition profile recovered from the citrus solid waste and its related in vitro antioxidant and antimicrobial activities.

Methods

Solid waste residues remaining after the juice extraction process of three citrus species, C. aurantium, C. sinensis and C. reticulata were extracted with maceration with hydroethanol mix.

Results

Our findings showed that the highest levels of polymethoxyflavones were found in C. sinensis waste extracts, while O-glycosylpolymethoxylated flavonoids were highly accumulated in C. aurantium residue extracts. Luteolin 7-O glucoside, rutin, and myricetin were identified as dominant metabolites of the residue extracts from C. aurantium, C. reticulata and C. sinensis, respectively. Based on relative antioxidant capacity index (RACI) and global antioxidant score (GAS) measurements, the solid waste extracts of C. aurantium exhibited the strongest antioxidant potential. C. aurantium waste extracts were the most active against Gram-positive bacteria and F. oxysporum fungus, while, C. reticulata waste extracts were the most effective against Gram-negative bacteria and the three pathogenesis fungi: B. subtilis, C. albicans and A. flavus. C. sinensis exhibited the highest antifungal activity against A. niger.

Conclusion

Correlation analysis highlighted a positive correlation between Gram-positive bacteria and the content in glycosylated metabolites in one hand, and between Gram-negative bacteria and flavonoids in another hand.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adamczak, A., Ożarowski, M., Karpiński, T.M.: Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 9(1), 109 (2019)

    Article  Google Scholar 

  2. Baskar, A.A., Ignacimuthu, S., Michael, G.P., Al, N.K.: Cancer chemopreventive potential of luteolin-7-O-glucoside isolated from ophiorrhiza mungos Linn. Nutr. Cancer 63(1), 130–138 (2011)

    Google Scholar 

  3. Blando, F., Russo, R., Negro, C., Bellis, L.D., Frassinetti, S.: Antimicrobial and antibiofilm activity against staphylococcus aureus of opuntia ficus-indica (L.) Mill cladode polyphenolic extracts. Antioxidants 8, 1–13 (2019)

    Article  Google Scholar 

  4. Bonesi, M., Loizzo, M.R., Leporini, M., Tenuta, M.C., Passalacqua, N.G., Tundis, R.: Comparative evaluation of petitgrain oils from six Citrus species alone and in combination as potential functional anti-radicals and antioxidant agents. Plant Biosyst. (2017). https://doi.org/10.1080/11263504.2017.1403396

    Article  Google Scholar 

  5. Bounatirou, S., Smiti, S., Miguel, M.G., Faleiro, L., Rejeb, M.N., Neffati, M.: Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from tunisian thymus capitatus. Food Chem. 105, 146–155 (2007)

    Article  Google Scholar 

  6. Cristani, M., D’Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M.G., Micieli, D., Venuti, V., Bisignano, G., Saija, A., Trombetta, D.: Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem. 55, 6300–6308 (2007)

    Article  Google Scholar 

  7. Echeverría, J., Opazo, J., Mendoza, L., Urzúa, A., Wilkens, M.: Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora. Molecules (Basel, Switzerland) 22(4), 608 (2017). https://doi.org/10.3390/molecules22040608

    Article  Google Scholar 

  8. Falcinelli, B., Famiani, F., Paoletti, A., D’Egidio, S., Stagnari, F., Galieni, A., Benincasa, P.: Phenolic compounds and antioxidant activity of sprouts from seeds of citrus species. Agriculture 10, 33 (2020)

    Article  Google Scholar 

  9. Fancello, F., Petretto, G.L., Zara, S., Sanna, M.L., Addis, R., Maldini, M., Foddai, M., Rourke, J.P., Chessa, M., Pintore, G.: Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT-Food Sci. Technol. 69, 579–585 (2016)

    Article  Google Scholar 

  10. Ganeshpurkar, A., Saluja, A.K.: The pharmacological potential of rutin. Saudi Pharm. J. 25(2), 149–164 (2017)

    Article  Google Scholar 

  11. Gao, X., Ohlander, M., Jeppsson, N., Björk, L., Trajkovski, V.: Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophaer hamnoides L.) during maturation. J. Agric. Food Chem. 48, 1485–1490 (2000)

    Article  Google Scholar 

  12. Gómez-Mejía, E., Rosales-Conrado, N., León-González, M.E., Madrid, Y.: Citrus peels waste as a source of value-added compounds: extraction and quantification of bioactive polyphenols. Food Chem. 295, 289–299 (2019)

    Article  Google Scholar 

  13. Hafsa, J., Smach, M.A., Ben Khedher, M.R., Charfeddine, B., Limem, K., Majdoub, H., Rouatbi, S.: Physical, antioxidant and antimicrobial properties of chitosan films containing eucalyptus globulus essential oil. LWT Food Sci. Technol. 68, 356–364 (2016)

    Article  Google Scholar 

  14. Hanato, T., Kagawa, H., Yasuhara, T., Okuda, T.: Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36(6), 2090–2097 (1988)

    Article  Google Scholar 

  15. Lamine, M., Rahali, F.Z., Hamdaoui, G., Selmi, S., Mliki, A., Gargouri, M.: Associating chemical analysis to molecular markers for the valorization of citrus aurantium leaves: a useful starting point for marker-assisted selection. Euphytica 213, 1–14 (2017)

    Article  Google Scholar 

  16. Lamine, M., Rahali, F.Z., Hammami, M., Mliki, A.: Correlative metabolite profiling approach to understand antioxidant and antimicrobial activities from citrus essential oils. Int. J. Food Sci. Technol. (2019). https://doi.org/10.1111/ijfs.14173

    Article  Google Scholar 

  17. Leeuw, R.W., Kevers, C., Pincemail, J., Defraigne, J.O., Dommes, J.: Antioxidant capacity and phenolic composition of red wines from various grape varieties: specificity of Pinot Noir. J. Food Compos. Anal. 36, 40–50 (2014)

    Article  Google Scholar 

  18. Leporini, M., Tundis, R., Sicari, V., et al.: Impact of extraction processes on phytochemicals content and biological activity of citrus × clementina hort Ex tan leaves: new opportunity for under-utilized food by-products. Food Res. Int. 127, 108742 (2020). https://doi.org/10.1016/j.foodres.2019.108742

    Article  Google Scholar 

  19. Li, S.M., Lo, C.Y., Ho, C.T.: Hydroxylated polymethoxyfavones and methylated favonoids in sweet orange (Citrus sinensis) peel. J Agr. Food Chem. 54(12), 4176–4185 (2006)

    Article  Google Scholar 

  20. Loizzo, M.R., Tundis, R., Bonesi, M., Di Sanzo, G., Verardi, A., Lopresto, C.G., et al.: Chemical profile and antioxidant properties of extracts and essential oils from Citrus × limon (L.) BURM. cv femminello comune. Chem. Biodivers. 13, 571–581 (2016)

    Article  Google Scholar 

  21. Loizzo, M.R., Leporini, M., Sicari, V., Falco, T., Pellicanò, M.T., Tundis, R.: Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus × clementina Hort. juice. Eur. Food Res. Technol. 244, 523–534 (2018)

    Article  Google Scholar 

  22. Loizzo, M.R., Sicari, V., Tundis, R., Leporini, M., Falco, T., Calabrò, V.: The influence of ultrafiltration of Citrus limon L. Burm. cv femminello comune juice on its chemical composition and antioxidant, and hypoglycaemic properties. Antioxidants 8, 23 (2019)

    Article  Google Scholar 

  23. Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., et al.: Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 9, 68 (2015)

    Article  Google Scholar 

  24. Mahato, N., Sharma, K., Sinha, M., Cho, M.H.: Citrus waste derived nutra-/ pharmaceuticals for health benefits: current trends and future perspectives. J. Funct. Foods 40, 307–316 (2018)

    Article  Google Scholar 

  25. Martillanes, S., Rocha-Pimienta J., Cabrera-Bañegil M., Martín-Vertedor D., Delgado-Adámez J., 2017 Application of phenolic compounds for food preservation: food additive and active packaging, Phenolic Compounds - Biological Activity, Marcos Soto-Hernandez, Mariana Palma-Tenango and Maria del Rosario Garcia-Mateos, IntechOpen, DOI: 10.5772/66885

  26. Oikeh, E.I., Oviasogie, F.E., Omoregie, E.S.: Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin. Phytosci. 6, 46 (2020a)

    Article  Google Scholar 

  27. Oikeh, E.I., Oviasogie, F.E., Omoregie, E.S.: Evaluation of antimicrobial efficacy of ethanol extracts of fresh citrus sinensis (sweet orange) seeds against selected bacterial strains. J. Appl. Sci. Environ. Manage. 24(2), 249–252 (2020b). https://doi.org/10.4314/jasem.v24i2.9

    Article  Google Scholar 

  28. Orhan, F., Çeker, S., Anar, M., et al.: Protective effects of three luteolin derivatives on aflatoxin B1-induced genotoxicity on human blood cells. Med. Chem. Res. 25, 2567–2577 (2016)

    Article  Google Scholar 

  29. Osorio-Esquivel, O., Moreno, A.O., Alvarez, V.B., Dorantes-Alvarez, L., Giusti, M.M.: Phenolics, betacyanins and antioxidant activity in opuntia joconostle fruits. Food Res. Int. 44(7), 2160–2168 (2011)

    Article  Google Scholar 

  30. Pellegrini, N., Re, R., Yang, M., Rice-Evans, C.A.: Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2’-azinobis (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization. Meth. Enzymol. 299, 379–389 (1999)

    Article  Google Scholar 

  31. Ríos, J.L., Recio, M.C.: Medicinal plants and antimicrobial activity. J. Ethnopharm. 100, 80–84 (2005)

    Article  Google Scholar 

  32. Satari, B., Karimi, K.: Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167 (2018)

    Article  Google Scholar 

  33. Schelz, Z., Molnar, J., Hohmann, J.: Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77(4), 279–285 (2006). https://doi.org/10.1016/j.fitote.2006.03.013

    Article  Google Scholar 

  34. Semwal, D.K., Semwal, R.B., Combrinck, S., Viljoen, A.: Myricetin: a dietary molecule with diverse biological activities. Nutrients 8(2), 90 (2016)

    Article  Google Scholar 

  35. Song, Y.S., Mu, P.C.: Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells. Food Chem. Toxicol. 65, 70–75 (2014)

    Article  Google Scholar 

  36. Sun, T., Tanumihardjo, S.A.: An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 72, 159–165 (2007)

    Article  Google Scholar 

  37. Tundis, R., Bonesi, M., Sicari, V., Pellicanò, T.M., Tenuta, M.C., Leporini, M., et al.: Poncirus trifoliata (L.) Raf.: chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J. Funct. Foods 25, 477–485 (2016)

    Article  Google Scholar 

  38. Tung, Y.C., Chou, Y.C., Hung, W.L., Cheng, A.C., Yu, R.C., Ho, C.T., Pan, M.H.: Polymethoxyflavones: chemistry and molecular mechanisms for cancer prevention and treatment. Curr. Pharmacol. Rep. 5(2), 98–113 (2019)

    Article  Google Scholar 

  39. Veldhuizen, E.J., Tjeerdsma-van Bokhoven, J.L., Zweijtzer, C., Burt, S.A., Haagsman, H.P.: Structural requirements for the antimicrobial activity of carvacrol. J. Agr. Food Chem. 54, 1874–1879 (2006)

    Article  Google Scholar 

  40. Wang, S., Yang, C., Tu, H., et al.: Characterization and metabolic diversity of flavonoids in Citrus Species. Sci. Rep. 7, 10549 (2017)

    Article  Google Scholar 

  41. Wang, S., Tu, H., Wan, J., Chen, W., Liu, X., Luo, J., Xu, J., Zhang, H.: Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem. 199, 8–17 (2016)

    Article  Google Scholar 

  42. Willcox, J.K., Ash, S.L., Catignani, G.L.: Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 44, 275–295 (2004)

    Article  Google Scholar 

  43. Xi, W., Lu, J., Qun, J., Jiao, B.: Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm) cultivars. J. Food Sci. Technol. 54(5), 1108–1118 (2017)

    Article  Google Scholar 

  44. Xia, J., Wishart, D.S.: Web-based inference of biological patterns, functions and pathways from metabolomic data using metaboanalyst. Nat. Protoc. 6(6), 743–760 (2011)

    Article  Google Scholar 

  45. Zema, D.A., Calabrò, P., Fòlino, A., Tamburino, V., Zappia, G., Zimbone, S.M.: Valorisation of citrus processing waste: a review. Waste Manage. 80, 252–273 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Lamine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamine, M., Gargouri, M., Rahali, F.Z. et al. Recovering and Characterizing Phenolic Compounds From Citrus By-Product: A Way Towards Agriculture of Subsistence and Sustainable Bioeconomy. Waste Biomass Valor 12, 4721–4731 (2021). https://doi.org/10.1007/s12649-020-01306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01306-9

Keywords

Navigation