Skip to main content
Log in

Synthesizing Precursors for Functional Food Structured Lipids from Soybean Oil Deodorized Distillates

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A “green” scheme of synthesizing diglycerides as a means of valorizing an oil processing by-product, specifically soybean oil deodorized distillate (SODD), was established. Different glycerol dosing strategies were implemented in the solvent-free lipase catalyzed esterification of free fatty acids with glycerol within molar ratios of 2–4 and temperatures of 40–60 °C. The process responses were compared with non-dosed systems in this study and other similar processes reported in literature. Better 1,3-diglyceride selectivity at comparable yields were observed with glycerol dosed-systems over non-dosed systems. The presence of molecular sieves negatively affected 1,3-diglyceride selectivity, total diglyceride selectivity and yield. Selectivity of 0.91 ± 0.01 g diglycerides/g (mono + triglycerides), free fatty acid conversion of 57.87 ± 3.46%, and yield of 30.59 ± 1.26 g diglyceride/100 g raw material is obtained with SODD at 40 °C, overall free fatty acid to glycerol molar ratio of 2, 4 wt% Novozyme 435 and 48 h. The process scaled better than most solvent-based ones supported with hygroscopic sorbents in terms of reaction mass efficiency.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lauridsen, J.B.: Food emulsifiers: surface activity, edibility, manufacture, composition, and application. J. Am. Oil Chem. Soc. 53, 400–407 (1976). https://doi.org/10.1007/BF02605731

    Article  Google Scholar 

  2. Zhang, Y., Wang, X., Zou, S., Xie, D., Jin, Q., Wang, X.: Synthesis of 2-docosahexaenoylglycerol by enzymatic ethanolysis. Bioresour. Technol. 251, 334–340 (2018). https://doi.org/10.1016/j.biortech.2017.12.025

    Article  Google Scholar 

  3. Zheng, M.-M., Huang, Q., Huang, F., Guo, P., Xiang, X., Deng, Q., Li, W., Wan, C., Zheng, C.: Production of novel “functional oil” rich in diglycerides and phytosterol esters with “one-pot” enzymatic transesterification. J. Agric. Food Chem. 62, 5142–5148 (2014). https://doi.org/10.1021/jf500744n

    Article  Google Scholar 

  4. Khaddaj-Mallat, R., Morin, C., Rousseau, É.: Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: anti-inflammatory and anti-proliferative effects. Eur. J. Pharmacol. 792, 70–77 (2016). https://doi.org/10.1016/j.ejphar.2016.10.038

    Article  Google Scholar 

  5. Sun, S., Hou, X., Hu, B.: Synthesis of glyceryl monocaffeate using ionic liquids as catalysts. J. Mol. Liq. 248, 643–650 (2017). https://doi.org/10.1016/j.molliq.2017.10.102

    Article  Google Scholar 

  6. Sun, S., Song, F., Bi, Y., Yang, G., Liu, W.: Solvent-free enzymatic transesterification of ethyl ferulate and monostearin: optimized by response surface methodology. J. Biotechnol. 164, 340–345 (2013). https://doi.org/10.1016/j.jbiotec.2013.01.013

    Article  Google Scholar 

  7. Sun, S., Hu, B.: Enzymatic preparation of novel caffeoyl structured lipids using monoacylglycerols as caffeoyl acceptor and transesterification mechanism. Biochem. Eng. J. 124, 78–87 (2017). https://doi.org/10.1016/j.bej.2017.05.002

    Article  Google Scholar 

  8. Kim, J., Chung, M., Choi, H.-D., Choi, I., Kim, B.H.: Enzymatic synthesis of structured monogalactosyldiacylglycerols enriched in pinolenic acid. J. Agric. Food Chem. 66, 8079–8085 (2018). https://doi.org/10.1021/acs.jafc.8b02599

    Article  Google Scholar 

  9. Morin, C., Rousseau, É., Fortin, S.: Anti-proliferative effects of a new docosapentaenoic acid monoacylglyceride in colorectal carcinoma cells. Prostaglandins Leukot. Essent. Fat. Acids. 89, 203–213 (2013). https://doi.org/10.1016/j.plefa.2013.07.004

    Article  Google Scholar 

  10. Mostafa, N.A., Maher, A., Abdelmoez, W.: Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv. Biosci. Biotechnol. 04, 900–907 (2013). https://doi.org/10.4236/abb.2013.49118

    Article  Google Scholar 

  11. Ferretti, C.A., Spotti, M.L., Di Cosimo, J.I.: Diglyceride-rich oils from glycerolysis of edible vegetable oils. Catal. Today. 302, 233–241 (2018). https://doi.org/10.1016/j.cattod.2017.04.008

    Article  Google Scholar 

  12. Singh, D., Patidar, P., Ganesh, A., Mahajani, S.: Esterification of oleic acid with glycerol in the presence of supported zinc oxide as catalyst. Ind. Eng. Chem. Res. 52, 14776–14786 (2013). https://doi.org/10.1021/ie401636v

    Article  Google Scholar 

  13. Duan, Z.-Q., Du, W., Liu, D.-H.: Rational synthesis of 1,3-diolein by enzymatic esterification. J. Biotechnol. 159, 44–49 (2012). https://doi.org/10.1016/j.jbiotec.2012.02.006

    Article  Google Scholar 

  14. Devi, B.L.A.P., Zhang, H., Damstrup, M.L., Guo, Z., Zhang, L., Lue, B.-M., Xu, X.: Enzymatic synthesis of designer lipids. Oléagineux, Corps gras, Lipides. 15, 189–195 (2008). https://doi.org/10.1051/ocl.2008.0194

    Article  Google Scholar 

  15. Oliveira, P.D., Rodrigues, A.M.C., Bezerra, C.V., Silva, L.H.M.: Chemical interesterification of blends with palm stearin and patawa oil. Food Chem. 215, 369–376 (2017). https://doi.org/10.1016/j.foodchem.2016.07.165

    Article  Google Scholar 

  16. Jiménez, M.J., Esteban, L., Robles, A., Hita, E., González, P.A., Muñío, M.M., Molina, E.: Production of triacylglycerols rich in palmitic acid at sn-2 position by lipase-catalyzed acidolysis. Biochem. Eng. J. 51, 172–179 (2010). https://doi.org/10.1016/j.bej.2010.06.015

    Article  Google Scholar 

  17. Duan, Z.-Q., Du, W., Liu, D.-H.: Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochem. 45, 1923–1927 (2010a). https://doi.org/10.1016/j.procbio.2010.03.007

    Article  Google Scholar 

  18. Duan, Z.-Q., Du, W., Liu, D.-H.: The pronounced effect of water activity on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification. Catal. Commun. 11, 356–358 (2010b). https://doi.org/10.1016/j.catcom.2009.10.030

    Article  Google Scholar 

  19. Duan, Z.-Q., Du, W., Liu, D.-H.: The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification. Bioresour. Technol. 101, 2568–2571 (2010c). https://doi.org/10.1016/j.biortech.2009.11.087

    Article  Google Scholar 

  20. Wang, Z., Du, W., Dai, L., Liu, D.: Study on Lipozyme TL IM-catalyzed esterification of oleic acid and glycerol for 1,3-diolein preparation. J. Mol. Catal. B Enzym. 127, 11–17 (2016). https://doi.org/10.1016/j.molcatb.2016.01.010

    Article  Google Scholar 

  21. Duan, Z.-Q., Du, W., Liu, D.-H.: The mechanism of solvent effect on the positional selectivity of Candida antarctica lipase B during 1,3-diolein synthesis by esterification. Bioresour. Technol. 102, 11048–11050 (2011). https://doi.org/10.1016/j.biortech.2011.09.003

    Article  Google Scholar 

  22. Hu, D., Chen, J., Xia, Y.: A comparative study on production of middle chain diacylglycerol through enzymatic esterification and glycerolysis. J. Ind. Eng. Chem. 19, 1457–1463 (2013). https://doi.org/10.1016/j.jiec.2013.01.009

    Article  Google Scholar 

  23. Ortiz, C., Ferreira, M.L., Barbosa, O., dos Santos, J.C.S., Rodrigues, R.C., Berenguer-Murcia, Á., Briand, L.E., Fernandez-Lafuente, R.: Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 9, 2380–2420 (2019). https://doi.org/10.1039/C9CY00415G

    Article  Google Scholar 

  24. Brautbar, N., Williams, J., II.: Industrial solvents and liver toxicity: risk assessment, risk factors and mechanisms. Int. J. Hyg. Environ. Heal. 205, 479–491 (2002)

    Article  Google Scholar 

  25. Bélafi-Bakó, K., Kovács, F., Gubicza, L., Hancsók, J.: Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal. Biotransformation. 20, 437–439 (2002). https://doi.org/10.1080/1024242021000040855

    Article  Google Scholar 

  26. Lu, J., Deng, L., Nie, K., Wang, F., Tan, T.: Stability of immobilized Candida sp. 99–125 lipase for biodiesel production. Chem. Eng. Technol. 35, 2120–2124 (2012). https://doi.org/10.1002/ceat.201200254

    Article  Google Scholar 

  27. Lai, C.C., Zullaikah, S., Vali, S.R., Ju, Y.H.: Lipase-catalyzed production of biodiesel from rice bran oil. J. Chem. Technol. Biotechnol. 80, 331–337 (2005). https://doi.org/10.1002/jctb.1208

    Article  Google Scholar 

  28. Zhao, Y., Liu, J., Deng, L., Wang, F., Tan, T.: Optimization of Candida sp. 99–125 lipase catalyzed esterification for synthesis of monoglyceride and diglyceride in solvent-free system. J. Mol. Catal. B Enzym. 72, 157–162 (2011). https://doi.org/10.1016/j.molcatb.2011.05.014

    Article  Google Scholar 

  29. Yesiloglu, Y., Kilic, I.: Lipase-catalyzed esterification of glycerol and oleic acid. J. Am. Oil Chem. Soc. 81, 281–284 (2004). https://doi.org/10.1007/s11746-004-0896-5

    Article  Google Scholar 

  30. Yeoh, C.M., Choong, T.S.Y., Abdullah, L.C., Yunus, R., Siew, W.L.: Influence of silica gel in production of diacylglycerol via enzymatic glycerolysis of palm olein. Eur. J. Lipid Sci. Technol. 111, 599–606 (2009). https://doi.org/10.1002/ejlt.200800265

    Article  Google Scholar 

  31. Ting, R.R., Agapay, R., Angkawijaya, A.E., Tran Nguyen, P.L., Truong, C.T., Ju, Y.: Diglyceride production via noncatalyzed esterification of glycerol and oleic acid. Asia-Pacific J. Chem. Eng. 14, 1–11 (2019). https://doi.org/10.1002/apj.2383

    Article  Google Scholar 

  32. Castillo, E., Dossat, V., Marty, A., Stéphane Condoret, J., Combes, D.: The role of silica gel in lipase-catalyzed esterification reactions of high-polar substrates. JAOCS J. Am. Oil Chem. Soc. 74, 77–85 (1997). https://doi.org/10.1007/s11746-997-0148-3

    Article  Google Scholar 

  33. Üstün, G.: Separation of fatty acid methyl esters from tall oil by selective adsorption. JAOCS J. Am. Oil Chem. Soc. 73, 203–210 (1996). https://doi.org/10.1007/BF02523896

    Article  Google Scholar 

  34. Chandrasekar, G., Vinu, A., Murugesan, V., Hartmann, M.: Adsorption of vitamin E on mesoporous silica molecular sieves. In: Raj, S. (ed.) Materials research bulletin, pp. 1169–1176. Elsevier, Amsterdam (2005)

    Google Scholar 

  35. Rosu, R., Yasui, M., Iwasaki, Y., Yamane, T.: Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. JAOCS J. Am. Oil Chem. Soc. 76, 839–843 (1999). https://doi.org/10.1007/s11746-999-0074-7

    Article  Google Scholar 

  36. Chongkhong, S., Tongurai, C., Chetpattananondh, P., Bunyakan, C.: Biodiesel production by esterification of palm fatty acid distillate. Biomass Bioenergy 31, 563–568 (2007). https://doi.org/10.1016/j.biombioe.2007.03.001

    Article  Google Scholar 

  37. Chongkhong, S., Tongurai, C., Chetpattananondh, P.: Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renew. Energy 34, 1059–1063 (2009). https://doi.org/10.1016/j.renene.2008.07.008

    Article  Google Scholar 

  38. D’Amato Villardi, H.G., Leal, M.F., De Azevedo Andrade, P.H., Pessoa, F.L.P., Salgado, A.M., De Oliveira, A.R.G.: Catalytic and non-catalytic esterification of soybean oil deodorizer distillate by ethanol: kinetic modelling. Chem. Eng. Trans. 57, 1999–2004 (2017). https://doi.org/10.3303/CET1757334

    Article  Google Scholar 

  39. Shimada, Y., Nakai, S., Suenaga, M., Sugihara, A., Kitano, M., Tominaga, Y.: Facile purification of tocopherols from soybean oil deodorizer distillate in high yield using lipase. JAOCS J. Am. Oil Chem. Soc. 77, 1009–1013 (2000). https://doi.org/10.1007/s11746-000-0160-z

    Article  Google Scholar 

  40. Kasim, N.S., Gunawan, S., Ju, Y.H.: Isolation and identification of steroidal hydrocarbons in soybean oil deodorizer distillate. Food Chem. 117, 15–19 (2009). https://doi.org/10.1016/j.foodchem.2009.03.066

    Article  Google Scholar 

  41. Gunawan, S., Kasim, N.S., Ju, Y.H.: Separation and purification of squalene from soybean oil deodorizer distillate. Sep. Purif. Technol. 60, 128–135 (2008). https://doi.org/10.1016/j.seppur.2007.08.001

    Article  Google Scholar 

  42. Lo, S.K., Baharin, B.S., Tan, C.P., Lai, O.M.: Lipase-catalysed production and chemical composition of diacylglycerols from soybean oil deodoriser distillate. Eur. J. Lipid Sci. Technol. 106, 218–224 (2004). https://doi.org/10.1002/ejlt.200300888

    Article  Google Scholar 

  43. Go, A.W., Sutanto, S., Ismadji, S., Ju, Y.H.: Catalyst free production of partial glycerides: acetone as solvent. RSC Adv. 5, 30833–30840 (2015). https://doi.org/10.1039/c5ra03249k

    Article  Google Scholar 

  44. Meng, Z., Lu, S., Geng, W., Huang, J., Wang, X., Liu, Y.: Preliminary study on acyl incorporation and migration in the production of 1,3-diacylglycerol by immobilized lipozyme RM IM-catalyzed esterification. Food Sci. Technol. Res. 20, 175–182 (2014). https://doi.org/10.3136/fstr.20.175

    Article  Google Scholar 

  45. de Gomes, S.M., Santos, M.R.D., Salviano, A.B., Mendonça, F.G., Menezes, I.R.S., Jurisch, M., Rodrigues, G.D., Augusti, R., Martins, P.S., Lago, R.M.: Biphasic reaction of glycerol and oleic acid: Byproducts formation and phase transfer autocatalytic effect. Catal. Today. 344, 227–233 (2020). https://doi.org/10.1016/j.cattod.2019.02.011

    Article  Google Scholar 

  46. Kong, P.S., Pérès, Y., Wan Daud, W.M.A., Cognet, P., Aroua, M.K.: Esterification of glycerol with oleic acid over hydrophobic zirconia-silica acid catalyst and commercial acid catalyst: optimization and influence of catalyst acidity. Front. Chem. 7, 1–11 (2019). https://doi.org/10.3389/fchem.2019.00205

    Article  Google Scholar 

  47. Andrade-Tacca, C.A., Chang, C.C., Chen, Y.H., Ji, D.R., Wang, Y.Y., Yen, Y.Q., Chang, C.Y.: Reduction of FFA in jatropha curcas oil via sequential direct-ultrasonic irradiation and dosage of methanol/sulfuric acid catalyst mixture on esterification process. Energy Convers. Manag. 88, 1078–1085 (2014). https://doi.org/10.1016/j.enconman.2014.09.020

    Article  Google Scholar 

  48. Huang, Z., Cao, Z., Guo, Z., Chen, L., Wang, Z., Sui, X., Jiang, L.: Lipase catalysis of α-linolenic acid-rich medium- and long-chain triacylglycerols from perilla oil and medium-chain triacylglycerols with reduced by-products. J. Sci. Food Agric. 100, 4565–4574 (2020). https://doi.org/10.1002/jsfa.10515

    Article  Google Scholar 

  49. Abd Razak, N.N., Abd Razak, N.N., Pérès, Y., Gew, L.T., Cognet, P., Aroua, M.K., Aroua, M.K.: Effect of reaction medium mixture on the lipase catalyzed synthesis of diacylglycerol. Ind. Eng. Chem. Res. 59, 9869–9881 (2020). https://doi.org/10.1021/acs.iecr.0c00298

    Article  Google Scholar 

  50. Wang, L., Du, W., Liu, D., Li, L., Dai, N.: Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J. Mol. Catal. B Enzym. 43, 29–32 (2006). https://doi.org/10.1016/j.molcatb.2006.03.005

    Article  Google Scholar 

  51. Gangopadhyay, S., Nandi, S., Ghosh, S.: Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis. J. Oleo Sci. 56, 13–17 (2007). https://doi.org/10.5650/jos.56.13

    Article  Google Scholar 

  52. Tangkam, K., Weber, N., Wiege, B.: Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining. Grasas Aceites 59, 245–253 (2008). https://doi.org/10.3989/gya.2008.v59.i3.515

    Article  Google Scholar 

  53. Zhao, J.F., Tao-Wang, Lin, J.P., Yang, L.R., Wu, M.B.: Preparation of high-purity 1,3-diacylglycerol using performance-enhanced lipase immobilized on nanosized magnetite particles. Biotechnol. Bioprocess Eng. 24, 326–336 (2019). https://doi.org/10.1007/s12257-018-0458-3

    Article  Google Scholar 

  54. Encinar, J.M., González, J.F., Sánchez, N., Nogales-Delgado, S.: Sunflower oil transesterification with methanol using immobilized lipase enzymes. Bioprocess Biosyst. Eng. 42, 157–166 (2019). https://doi.org/10.1007/s00449-018-2023-z

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Taiwan Building Technology Center (Grant/Project Number—108P011) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan, as well as the National Taiwan University of Science and Technology for the teaching and research start-up grant (Grant/Project Number—1090410305) provided for 2019–2021.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, investigation, formal analysis, visualization, writing—original draft, writing—review and editing, data curation [RCA]; supervision, project administration, funding acquisition, writing—review and editing [Y-HJ]; writing—review and editing [PLT-N]; writing—review and editing [AEA]; writing—review and editing [SPS]; conceptualization, formal analysis, writing—review and editing, project administration and funding acquisition [AWG].

Corresponding author

Correspondence to Alchris Woo Go.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agapay, R.C., Ju, YH., Tran-Nguyen, P.L. et al. Synthesizing Precursors for Functional Food Structured Lipids from Soybean Oil Deodorized Distillates. Waste Biomass Valor 12, 3899–3911 (2021). https://doi.org/10.1007/s12649-020-01284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01284-y

Keywords

Profiles

  1. Artik Elisa Angkawijaya
  2. Shella Permatasari Santoso