Abstract
A “green” scheme of synthesizing diglycerides as a means of valorizing an oil processing by-product, specifically soybean oil deodorized distillate (SODD), was established. Different glycerol dosing strategies were implemented in the solvent-free lipase catalyzed esterification of free fatty acids with glycerol within molar ratios of 2–4 and temperatures of 40–60 °C. The process responses were compared with non-dosed systems in this study and other similar processes reported in literature. Better 1,3-diglyceride selectivity at comparable yields were observed with glycerol dosed-systems over non-dosed systems. The presence of molecular sieves negatively affected 1,3-diglyceride selectivity, total diglyceride selectivity and yield. Selectivity of 0.91 ± 0.01 g diglycerides/g (mono + triglycerides), free fatty acid conversion of 57.87 ± 3.46%, and yield of 30.59 ± 1.26 g diglyceride/100 g raw material is obtained with SODD at 40 °C, overall free fatty acid to glycerol molar ratio of 2, 4 wt% Novozyme 435 and 48 h. The process scaled better than most solvent-based ones supported with hygroscopic sorbents in terms of reaction mass efficiency.
Graphic Abstract




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Lauridsen, J.B.: Food emulsifiers: surface activity, edibility, manufacture, composition, and application. J. Am. Oil Chem. Soc. 53, 400–407 (1976). https://doi.org/10.1007/BF02605731
Zhang, Y., Wang, X., Zou, S., Xie, D., Jin, Q., Wang, X.: Synthesis of 2-docosahexaenoylglycerol by enzymatic ethanolysis. Bioresour. Technol. 251, 334–340 (2018). https://doi.org/10.1016/j.biortech.2017.12.025
Zheng, M.-M., Huang, Q., Huang, F., Guo, P., Xiang, X., Deng, Q., Li, W., Wan, C., Zheng, C.: Production of novel “functional oil” rich in diglycerides and phytosterol esters with “one-pot” enzymatic transesterification. J. Agric. Food Chem. 62, 5142–5148 (2014). https://doi.org/10.1021/jf500744n
Khaddaj-Mallat, R., Morin, C., Rousseau, É.: Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: anti-inflammatory and anti-proliferative effects. Eur. J. Pharmacol. 792, 70–77 (2016). https://doi.org/10.1016/j.ejphar.2016.10.038
Sun, S., Hou, X., Hu, B.: Synthesis of glyceryl monocaffeate using ionic liquids as catalysts. J. Mol. Liq. 248, 643–650 (2017). https://doi.org/10.1016/j.molliq.2017.10.102
Sun, S., Song, F., Bi, Y., Yang, G., Liu, W.: Solvent-free enzymatic transesterification of ethyl ferulate and monostearin: optimized by response surface methodology. J. Biotechnol. 164, 340–345 (2013). https://doi.org/10.1016/j.jbiotec.2013.01.013
Sun, S., Hu, B.: Enzymatic preparation of novel caffeoyl structured lipids using monoacylglycerols as caffeoyl acceptor and transesterification mechanism. Biochem. Eng. J. 124, 78–87 (2017). https://doi.org/10.1016/j.bej.2017.05.002
Kim, J., Chung, M., Choi, H.-D., Choi, I., Kim, B.H.: Enzymatic synthesis of structured monogalactosyldiacylglycerols enriched in pinolenic acid. J. Agric. Food Chem. 66, 8079–8085 (2018). https://doi.org/10.1021/acs.jafc.8b02599
Morin, C., Rousseau, É., Fortin, S.: Anti-proliferative effects of a new docosapentaenoic acid monoacylglyceride in colorectal carcinoma cells. Prostaglandins Leukot. Essent. Fat. Acids. 89, 203–213 (2013). https://doi.org/10.1016/j.plefa.2013.07.004
Mostafa, N.A., Maher, A., Abdelmoez, W.: Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv. Biosci. Biotechnol. 04, 900–907 (2013). https://doi.org/10.4236/abb.2013.49118
Ferretti, C.A., Spotti, M.L., Di Cosimo, J.I.: Diglyceride-rich oils from glycerolysis of edible vegetable oils. Catal. Today. 302, 233–241 (2018). https://doi.org/10.1016/j.cattod.2017.04.008
Singh, D., Patidar, P., Ganesh, A., Mahajani, S.: Esterification of oleic acid with glycerol in the presence of supported zinc oxide as catalyst. Ind. Eng. Chem. Res. 52, 14776–14786 (2013). https://doi.org/10.1021/ie401636v
Duan, Z.-Q., Du, W., Liu, D.-H.: Rational synthesis of 1,3-diolein by enzymatic esterification. J. Biotechnol. 159, 44–49 (2012). https://doi.org/10.1016/j.jbiotec.2012.02.006
Devi, B.L.A.P., Zhang, H., Damstrup, M.L., Guo, Z., Zhang, L., Lue, B.-M., Xu, X.: Enzymatic synthesis of designer lipids. Oléagineux, Corps gras, Lipides. 15, 189–195 (2008). https://doi.org/10.1051/ocl.2008.0194
Oliveira, P.D., Rodrigues, A.M.C., Bezerra, C.V., Silva, L.H.M.: Chemical interesterification of blends with palm stearin and patawa oil. Food Chem. 215, 369–376 (2017). https://doi.org/10.1016/j.foodchem.2016.07.165
Jiménez, M.J., Esteban, L., Robles, A., Hita, E., González, P.A., Muñío, M.M., Molina, E.: Production of triacylglycerols rich in palmitic acid at sn-2 position by lipase-catalyzed acidolysis. Biochem. Eng. J. 51, 172–179 (2010). https://doi.org/10.1016/j.bej.2010.06.015
Duan, Z.-Q., Du, W., Liu, D.-H.: Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochem. 45, 1923–1927 (2010a). https://doi.org/10.1016/j.procbio.2010.03.007
Duan, Z.-Q., Du, W., Liu, D.-H.: The pronounced effect of water activity on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification. Catal. Commun. 11, 356–358 (2010b). https://doi.org/10.1016/j.catcom.2009.10.030
Duan, Z.-Q., Du, W., Liu, D.-H.: The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification. Bioresour. Technol. 101, 2568–2571 (2010c). https://doi.org/10.1016/j.biortech.2009.11.087
Wang, Z., Du, W., Dai, L., Liu, D.: Study on Lipozyme TL IM-catalyzed esterification of oleic acid and glycerol for 1,3-diolein preparation. J. Mol. Catal. B Enzym. 127, 11–17 (2016). https://doi.org/10.1016/j.molcatb.2016.01.010
Duan, Z.-Q., Du, W., Liu, D.-H.: The mechanism of solvent effect on the positional selectivity of Candida antarctica lipase B during 1,3-diolein synthesis by esterification. Bioresour. Technol. 102, 11048–11050 (2011). https://doi.org/10.1016/j.biortech.2011.09.003
Hu, D., Chen, J., Xia, Y.: A comparative study on production of middle chain diacylglycerol through enzymatic esterification and glycerolysis. J. Ind. Eng. Chem. 19, 1457–1463 (2013). https://doi.org/10.1016/j.jiec.2013.01.009
Ortiz, C., Ferreira, M.L., Barbosa, O., dos Santos, J.C.S., Rodrigues, R.C., Berenguer-Murcia, Á., Briand, L.E., Fernandez-Lafuente, R.: Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 9, 2380–2420 (2019). https://doi.org/10.1039/C9CY00415G
Brautbar, N., Williams, J., II.: Industrial solvents and liver toxicity: risk assessment, risk factors and mechanisms. Int. J. Hyg. Environ. Heal. 205, 479–491 (2002)
Bélafi-Bakó, K., Kovács, F., Gubicza, L., Hancsók, J.: Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal. Biotransformation. 20, 437–439 (2002). https://doi.org/10.1080/1024242021000040855
Lu, J., Deng, L., Nie, K., Wang, F., Tan, T.: Stability of immobilized Candida sp. 99–125 lipase for biodiesel production. Chem. Eng. Technol. 35, 2120–2124 (2012). https://doi.org/10.1002/ceat.201200254
Lai, C.C., Zullaikah, S., Vali, S.R., Ju, Y.H.: Lipase-catalyzed production of biodiesel from rice bran oil. J. Chem. Technol. Biotechnol. 80, 331–337 (2005). https://doi.org/10.1002/jctb.1208
Zhao, Y., Liu, J., Deng, L., Wang, F., Tan, T.: Optimization of Candida sp. 99–125 lipase catalyzed esterification for synthesis of monoglyceride and diglyceride in solvent-free system. J. Mol. Catal. B Enzym. 72, 157–162 (2011). https://doi.org/10.1016/j.molcatb.2011.05.014
Yesiloglu, Y., Kilic, I.: Lipase-catalyzed esterification of glycerol and oleic acid. J. Am. Oil Chem. Soc. 81, 281–284 (2004). https://doi.org/10.1007/s11746-004-0896-5
Yeoh, C.M., Choong, T.S.Y., Abdullah, L.C., Yunus, R., Siew, W.L.: Influence of silica gel in production of diacylglycerol via enzymatic glycerolysis of palm olein. Eur. J. Lipid Sci. Technol. 111, 599–606 (2009). https://doi.org/10.1002/ejlt.200800265
Ting, R.R., Agapay, R., Angkawijaya, A.E., Tran Nguyen, P.L., Truong, C.T., Ju, Y.: Diglyceride production via noncatalyzed esterification of glycerol and oleic acid. Asia-Pacific J. Chem. Eng. 14, 1–11 (2019). https://doi.org/10.1002/apj.2383
Castillo, E., Dossat, V., Marty, A., Stéphane Condoret, J., Combes, D.: The role of silica gel in lipase-catalyzed esterification reactions of high-polar substrates. JAOCS J. Am. Oil Chem. Soc. 74, 77–85 (1997). https://doi.org/10.1007/s11746-997-0148-3
Üstün, G.: Separation of fatty acid methyl esters from tall oil by selective adsorption. JAOCS J. Am. Oil Chem. Soc. 73, 203–210 (1996). https://doi.org/10.1007/BF02523896
Chandrasekar, G., Vinu, A., Murugesan, V., Hartmann, M.: Adsorption of vitamin E on mesoporous silica molecular sieves. In: Raj, S. (ed.) Materials research bulletin, pp. 1169–1176. Elsevier, Amsterdam (2005)
Rosu, R., Yasui, M., Iwasaki, Y., Yamane, T.: Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. JAOCS J. Am. Oil Chem. Soc. 76, 839–843 (1999). https://doi.org/10.1007/s11746-999-0074-7
Chongkhong, S., Tongurai, C., Chetpattananondh, P., Bunyakan, C.: Biodiesel production by esterification of palm fatty acid distillate. Biomass Bioenergy 31, 563–568 (2007). https://doi.org/10.1016/j.biombioe.2007.03.001
Chongkhong, S., Tongurai, C., Chetpattananondh, P.: Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renew. Energy 34, 1059–1063 (2009). https://doi.org/10.1016/j.renene.2008.07.008
D’Amato Villardi, H.G., Leal, M.F., De Azevedo Andrade, P.H., Pessoa, F.L.P., Salgado, A.M., De Oliveira, A.R.G.: Catalytic and non-catalytic esterification of soybean oil deodorizer distillate by ethanol: kinetic modelling. Chem. Eng. Trans. 57, 1999–2004 (2017). https://doi.org/10.3303/CET1757334
Shimada, Y., Nakai, S., Suenaga, M., Sugihara, A., Kitano, M., Tominaga, Y.: Facile purification of tocopherols from soybean oil deodorizer distillate in high yield using lipase. JAOCS J. Am. Oil Chem. Soc. 77, 1009–1013 (2000). https://doi.org/10.1007/s11746-000-0160-z
Kasim, N.S., Gunawan, S., Ju, Y.H.: Isolation and identification of steroidal hydrocarbons in soybean oil deodorizer distillate. Food Chem. 117, 15–19 (2009). https://doi.org/10.1016/j.foodchem.2009.03.066
Gunawan, S., Kasim, N.S., Ju, Y.H.: Separation and purification of squalene from soybean oil deodorizer distillate. Sep. Purif. Technol. 60, 128–135 (2008). https://doi.org/10.1016/j.seppur.2007.08.001
Lo, S.K., Baharin, B.S., Tan, C.P., Lai, O.M.: Lipase-catalysed production and chemical composition of diacylglycerols from soybean oil deodoriser distillate. Eur. J. Lipid Sci. Technol. 106, 218–224 (2004). https://doi.org/10.1002/ejlt.200300888
Go, A.W., Sutanto, S., Ismadji, S., Ju, Y.H.: Catalyst free production of partial glycerides: acetone as solvent. RSC Adv. 5, 30833–30840 (2015). https://doi.org/10.1039/c5ra03249k
Meng, Z., Lu, S., Geng, W., Huang, J., Wang, X., Liu, Y.: Preliminary study on acyl incorporation and migration in the production of 1,3-diacylglycerol by immobilized lipozyme RM IM-catalyzed esterification. Food Sci. Technol. Res. 20, 175–182 (2014). https://doi.org/10.3136/fstr.20.175
de Gomes, S.M., Santos, M.R.D., Salviano, A.B., Mendonça, F.G., Menezes, I.R.S., Jurisch, M., Rodrigues, G.D., Augusti, R., Martins, P.S., Lago, R.M.: Biphasic reaction of glycerol and oleic acid: Byproducts formation and phase transfer autocatalytic effect. Catal. Today. 344, 227–233 (2020). https://doi.org/10.1016/j.cattod.2019.02.011
Kong, P.S., Pérès, Y., Wan Daud, W.M.A., Cognet, P., Aroua, M.K.: Esterification of glycerol with oleic acid over hydrophobic zirconia-silica acid catalyst and commercial acid catalyst: optimization and influence of catalyst acidity. Front. Chem. 7, 1–11 (2019). https://doi.org/10.3389/fchem.2019.00205
Andrade-Tacca, C.A., Chang, C.C., Chen, Y.H., Ji, D.R., Wang, Y.Y., Yen, Y.Q., Chang, C.Y.: Reduction of FFA in jatropha curcas oil via sequential direct-ultrasonic irradiation and dosage of methanol/sulfuric acid catalyst mixture on esterification process. Energy Convers. Manag. 88, 1078–1085 (2014). https://doi.org/10.1016/j.enconman.2014.09.020
Huang, Z., Cao, Z., Guo, Z., Chen, L., Wang, Z., Sui, X., Jiang, L.: Lipase catalysis of α-linolenic acid-rich medium- and long-chain triacylglycerols from perilla oil and medium-chain triacylglycerols with reduced by-products. J. Sci. Food Agric. 100, 4565–4574 (2020). https://doi.org/10.1002/jsfa.10515
Abd Razak, N.N., Abd Razak, N.N., Pérès, Y., Gew, L.T., Cognet, P., Aroua, M.K., Aroua, M.K.: Effect of reaction medium mixture on the lipase catalyzed synthesis of diacylglycerol. Ind. Eng. Chem. Res. 59, 9869–9881 (2020). https://doi.org/10.1021/acs.iecr.0c00298
Wang, L., Du, W., Liu, D., Li, L., Dai, N.: Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J. Mol. Catal. B Enzym. 43, 29–32 (2006). https://doi.org/10.1016/j.molcatb.2006.03.005
Gangopadhyay, S., Nandi, S., Ghosh, S.: Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis. J. Oleo Sci. 56, 13–17 (2007). https://doi.org/10.5650/jos.56.13
Tangkam, K., Weber, N., Wiege, B.: Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining. Grasas Aceites 59, 245–253 (2008). https://doi.org/10.3989/gya.2008.v59.i3.515
Zhao, J.F., Tao-Wang, Lin, J.P., Yang, L.R., Wu, M.B.: Preparation of high-purity 1,3-diacylglycerol using performance-enhanced lipase immobilized on nanosized magnetite particles. Biotechnol. Bioprocess Eng. 24, 326–336 (2019). https://doi.org/10.1007/s12257-018-0458-3
Encinar, J.M., González, J.F., Sánchez, N., Nogales-Delgado, S.: Sunflower oil transesterification with methanol using immobilized lipase enzymes. Bioprocess Biosyst. Eng. 42, 157–166 (2019). https://doi.org/10.1007/s00449-018-2023-z
Funding
This work was financially supported by the Taiwan Building Technology Center (Grant/Project Number—108P011) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan, as well as the National Taiwan University of Science and Technology for the teaching and research start-up grant (Grant/Project Number—1090410305) provided for 2019–2021.
Author information
Authors and Affiliations
Contributions
Methodology, investigation, formal analysis, visualization, writing—original draft, writing—review and editing, data curation [RCA]; supervision, project administration, funding acquisition, writing—review and editing [Y-HJ]; writing—review and editing [PLT-N]; writing—review and editing [AEA]; writing—review and editing [SPS]; conceptualization, formal analysis, writing—review and editing, project administration and funding acquisition [AWG].
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Agapay, R.C., Ju, YH., Tran-Nguyen, P.L. et al. Synthesizing Precursors for Functional Food Structured Lipids from Soybean Oil Deodorized Distillates. Waste Biomass Valor 12, 3899–3911 (2021). https://doi.org/10.1007/s12649-020-01284-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-01284-y


