Skip to main content
Log in

Improvements in the Extractive and Carbohydrate Analysis of Sugarcane Bagasse

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Generic procedures for the determination of extractives and carbohydrates (glucose, xylose, galactose, arabinose, mannose) were improved specifically for sugarcane bagasse. The extraction time was optimized using a specific design of experiments. The optimal condition for sugarcane biomass with up to 20% extractives was 11.5 h of extraction in water, followed by 9 h in ethanol. For the carbohydrate analysis, a separation method using liquid chromatography was improved and optimized to reduce the retention time of furanic compounds. The reduction obtained was approximately 30%. The optimal condition was the isocratic elution of the mobile phase with an aqueous solution containing 15% acetonitrile. The percentages of glycans, xylans, and arabinans in the extractive-free biomass was 33%, 22%, and 6.5%, respectively. The galactans and mannans were not detected. Acetyl groups and uronic acids were not determined.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GVL:

Gamma-valerolactone

HMF:

5-Hydroxymethylfurfural

NREL:

National Renewable Energy Laboratory

TAPPI:

Technical Association of the Pulp and Paper Industry

ASTM:

American Society of Testing and Materials

tw :

Extraction time in water

te :

Extraction time in ethanol

CCD:

Central composite design

HPLC:

High-performance liquid chromatograph

PDA:

Photodiode array

ELSD:

Evaporative light scattering detector

ACN:

Acetonitrile

SRSs:

Sugar recovery standards

BMT:

Biomass of the RB867515 variety, used as a test biomass for the development of the procedure

BMT25:

Biomass of the RB867515 variety, used as a test biomass for the development of the procedure, dried in open air

BMT45:

Biomass of the RB867515 variety, used as a test biomass for the development of the procedure, oven-dried at 45 °C for 24 h

BMA32:

Biomass of the RB127032 variety, used as a application biomass for the validation of the procedure

BMA35:

Biomass of the RB127035 variety, used as a application biomass for the validation of the procedure

BMA39:

Biomass of the RB127039 variety, used as a application biomass for the validation of the procedure

BMA45:

Biomass of the RB127045 variety, used as a application biomass for the validation of the procedure

Extr:

Extractives

TL:

Total lignin

TCarb:

Total carbohydrates: cellulose and hemicellulose

IL:

Insoluble lignin

SC:

Silica in the lignin

SL:

Soluble lignin

TA:

Total ash

RSD:

Relative standard deviation

ANOVA:

Analysis of variance

R 2 :

Determination coefficient

CELLO:

Cellobiose

GLU:

Glucose

XYL:

Xylose

ARA:

Arabinose

GAL:

Galactose

MAN:

Mannose

FUR:

Furfural

HMF:

Hydroxymethylfurfural

GLN:

Glycan

XLN:

Xylan

ABN:

Arabinan

CELLU:

Cellulose

HEM:

Hemicellulose

References

  1. Baral, N.R., Sundstrom, E.R., Das, L., Gladden, J., Eudes, A., Mortimer, J.C., Singer, S.W., Mukhopadhyay, A., Scown, C.D.: Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain. Chem. Eng. 7(10), 9062–9079 (2019). https://doi.org/10.1021/acssuschemeng.9b01229

    Article  Google Scholar 

  2. Bezerra, T.L., Ragauskas, A.J.: A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuel. Bioprod. Biorefin. 10(5), 634–647 (2016). https://doi.org/10.1002/bbb.1662

    Article  Google Scholar 

  3. Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S.: Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew. Sustain. Energy Rev. 51, 682–698 (2015). https://doi.org/10.1016/j.rser.2015.05.044

    Article  Google Scholar 

  4. Chen, H.Z., Fu, X.G.: Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 57, 468–478 (2016). https://doi.org/10.1016/j.rser.2015.12.069

    Article  Google Scholar 

  5. Chandel, A.K., Silveira, M.H.L.: Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-products. Elsevier, Amsterdam (2017)

    Google Scholar 

  6. Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S.: The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370–381 (2018). https://doi.org/10.1016/j.biortech.2018.06.004

    Article  Google Scholar 

  7. Eggleston, G.: Positive aspects of cane sugar and sugar cane derived products in food and nutrition. J. Agric. Food Chem. 66(16), 4007–4012 (2018). https://doi.org/10.1021/acs.jafc.7b05734

    Article  Google Scholar 

  8. CONAB: Acompanhamento da safra brasileira de cana-de-açúcar, Safra 2017/18, Terceiro levantamento, vol. 4. pp. 1–77. Brasília (2017)

  9. Andrade, M.F., Colodette, J.L.: Dissolving pulp production from sugar cane bagasse. Ind. Crops Prod. 52, 58–64 (2014). https://doi.org/10.1016/j.indcrop.2013.09.041

    Article  Google Scholar 

  10. Hoang, N.V., Furtado, A., Donnan, L., Keeffe, E.C., Botha, F.C., Henry, R.J.: High-throughput profiling of the fiber and sugar composition of sugarcane biomass. BioEnergy Res. 10(2), 400–416 (2017). https://doi.org/10.1007/s12155-016-9801-8

    Article  Google Scholar 

  11. Kuchelmeister, C., Bauer, S.: Rapid small-scale determination of extractives in biomass. BioEnergy Res. 8(1), 68–76 (2015). https://doi.org/10.1007/s12155-014-9493-x

    Article  Google Scholar 

  12. Rocha, G.J.M., Nascimento, V.M., Goncalves, A.R., Silva, V.F.N., Martin, C.: Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind. Crops Prod. 64, 52–58 (2015). https://doi.org/10.1016/j.indcrop.2014.11.003

    Article  Google Scholar 

  13. Artz, J., Palkovits, R.: Cellulose-based platform chemical: The path to application. Curr. Opin. Green Sustain. Chem. 14, 14–18 (2018). https://doi.org/10.1016/j.cogsc.2018.05.005

    Article  Google Scholar 

  14. Dong, Y.X., Yu, H.Z., Iop: Research progress on biorefinery of lignocellulosic biomass. In: 2019 5th International Conference on Energy Materials and Environment Engineering, vol. 295. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol (2019)

  15. Liu, Y.R., Nie, Y., Lu, X.M., Zhang, X.P., He, H.Y., Pan, F.J., Zhou, L., Liu, X., Ji, X.Y., Zhang, S.J.: Cascade utilization of lignocellulosic biomass to high-value products. Green Chem. 21(13), 3499–3535 (2019). https://doi.org/10.1039/c9gc00473d

    Article  Google Scholar 

  16. Naidu, D.S., Hlangothi, S.P., John, M.J.: Bio-based products from xylan: a review. Carbohydr. Polym. 179, 28–41 (2018). https://doi.org/10.1016/j.carbpol.2017.09.064

    Article  Google Scholar 

  17. Matsuoka, S., Rubio, L.C.S.: Energy cane: a sound alternative of a bioenergy crop for tropics and subtropics. In: Khan, M.T., Khan, I.A. (eds.) Sugarcane Biofuels, pp. 39–66. Springer, New York (2019)

    Chapter  Google Scholar 

  18. Zhao, D.L., Momotaz, A., LaBorde, C., Irey, M.: Biomass yield and carbohydrate composition in sugarcane and energy cane grown on mineral soils. Sugar Tech. (2020). https://doi.org/10.1007/s12355-020-00807-0

    Article  Google Scholar 

  19. Carvalho-Netto, O.V., Bressiani, J.A., Soriano, H.L., Fiori, C.S., Santos, J.M., Barbosa, G.V.S., Xavier, M.A., Landell, M.G.A., Pereira, G.A.G.: The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem. Biol. Technol. Agric. 1(1), 20 (2014)

    Article  Google Scholar 

  20. Matsuoka, S., Kennedy, A.J., Santos, E.G.D., Tomazela, A.L., Rubio, L.C.S.: Energy cane: its concept, development, characteristics, and prospects. Adv. Bot. 2014, 13 (2014)

    Google Scholar 

  21. Barbosa, G.V.S., João, M.S., Diniz, C.A., Cursi, D.E., Hoffmann, H.P.: Energy cane breeding. Sugarcane Biorefinery Technology and Perspectives, pp. 103–116. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

  22. Chakraborty, S., Aggarwal, V., Mukherjee, D., Andras, K.: Biomass to biofuel: a review on production technology. Asia Pac. J. Chem. Eng. 7, S254–S262 (2012)

    Article  Google Scholar 

  23. Tappi: Sampling and preparing wood for analysis. In: TAPPI Standard Methods T257cm-12, Technical Association of the Pulp and Paper Industry, Atlanta, GA, USA (2012)

  24. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W.: Compositional analysis of lignocellulosic feedstocks. 1 Review and description of methods. J. Agric. Food Chem. 58(16), 9043–9053 (2010). https://doi.org/10.1021/jf1008023

    Article  Google Scholar 

  25. Alves, E.F., Bose, S.K., Francis, R.C., Colodette, J.L., Iakovlev, M., Van Heiningen, A.: Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydr. Polym. 82(4), 1097–1101 (2010). https://doi.org/10.1016/j.carbpol.2010.06.038

    Article  Google Scholar 

  26. Batalha, L., Han, Q., Jameel, H., Chang, H.M., Colodette, J.L., Gomes, F.J.B.: Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresour. Technol. 180, 97–105 (2015). https://doi.org/10.1016/j.biortech.2014.12.060

    Article  Google Scholar 

  27. de Carvalho, D.M., Sevastyanova, O., Penna, L.S., da Silva, B.P., Lindstrom, M.E., Colodette, J.L.: Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind. Crops Prod. 73, 118–126 (2015). https://doi.org/10.1016/j.indcrop.2015.04.021

    Article  Google Scholar 

  28. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. NREL/TP-510–42621, pp. 1–6. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  29. Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., Templeton, D.: Preparation of Samples for Compositional Analysis. NREL/TP-510-42620, pp. 1–9. National Renewable Energy Laboratory, Golden, CO (2008)

    Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Ash in Biomass. NREL/TP-510–42622, pp. 1–5. National Renewable Energy Laboratory, Golden, CO (2008)

    Google Scholar 

  31. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Extractives in Biomass. NREL/TP-510-42619, pp. 1–9. National Renewable Energy Laboratory, Golden, CO (2008)

    Google Scholar 

  32. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618, pp. 1–15. National Renewable Energy Laboratory, Golden (2012)

    Google Scholar 

  33. Masarin, F., Gurpilhares, D.B., Baffa, D.C.F., Barbosa, M.H.P., Carvalho, W., Ferraz, A., Milagres, A.M.F.: Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnol. Biofuels. (2011). https://doi.org/10.1186/1754-6834-4-55

    Article  Google Scholar 

  34. Pitarelo, A.P., Silva, T.A.D., Peralta-Zamora, P.G., Ramos, L.P.: Efeito do teor de umidade sobre o pré-tratamento a vapor e a hidrólise enzimática do bagaço de cana-de-açúcar. Quím. Nova 35(8), 1502–1509 (2012). https://doi.org/10.1590/S0100-40422012000800003

    Article  Google Scholar 

  35. Chong, B.F., Purcell, D.E., O'Shea, M.G.: Diffuse Reflectance, Near-Infrared Spectroscopic Estimation of Sugarcane Lignocellulose Components-Effect of Sample Preparation and Calibration Approach. BioEnergy Res. 6(1), 153–165 (2013). https://doi.org/10.1007/s12155-012-9243-x

    Article  Google Scholar 

  36. Saha, K., Dasgupta, J., Chakraborty, S., Felipe, A.A.F., Sikder, J., Curcio, S., dos Santos, J.C., Arafat, H.A., da Silva, S.S.: Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24(8), 3191–3207 (2017). https://doi.org/10.1007/s10570-017-1330-x

    Article  Google Scholar 

  37. Saha, K., Dwibedi, P., Ghosh, A., Sikder, J., Chakraborty, S., Curcio, S.: Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment. 3 Biotech 8(8), 12 (2018). https://doi.org/10.1007/s13205-018-1399-4

    Article  Google Scholar 

  38. Yuan, J.P., Chen, F.: Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC—dual detection. Food chem. 64(3), 423–427 (1999)

    Article  Google Scholar 

  39. Yuan, J.P., Wu, H., Zen, Y.S.: HPLC determination of 5-hydroxymethylfurfural in glucose injections. Chin. J. Pharm. 26, 505–506 (1995)

    Google Scholar 

  40. Catrinck, M.N., Barbosa, P.S., Filho, H.R.O., Monteiro, R.S., Barbosa, M.H.P., Ribas, R.M., Teofilo, R.F.: One-step process to produce furfural from sugarcane bagasse over niobium-based solid acid catalysts in a water medium. Fuel Process. Technol. 207, 11 (2020). https://doi.org/10.1016/j.fuproc.2020.106482

    Article  Google Scholar 

  41. Sasaki, M., Adschiri, T., Arai, K.: Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour. Technol. 86(3), 301–304 (2003). https://doi.org/10.1016/s0960-8524(02)00173-6

    Article  Google Scholar 

  42. Saha, K., Verma, P., Sikder, J., Chakraborty, S., Curcio, S.: Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renew. Energy 133, 66–76 (2019). https://doi.org/10.1016/j.renene.2018.10.014

    Article  Google Scholar 

  43. Saha, K., Maheswari, R.U., Sikder, J., Chakraborty, S., da Silva, S.S., dos Santos, J.C.: Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew. Sustain. Energy Rev. 74, 873–890 (2017). https://doi.org/10.1016/j.rser.2017.03.015

    Article  Google Scholar 

  44. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., Braun, R.: Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl. Biochem. Biotechnol. 98, 49–58 (2002). https://doi.org/10.1385/abab:98-100:1-9:49

    Article  Google Scholar 

  45. Saha, K., Maharana, A., Sikder, J., Chakraborty, S., Curcio, S., Drioli, E.: Continuous production of bioethanol from sugarcane bagasse and downstream purification using membrane integrated bioreactor. Catal. Today 331, 68–77 (2019). https://doi.org/10.1016/j.cattod.2017.11.031

    Article  Google Scholar 

  46. McDougall, G.J., Morrison, I.M., Stewart, D., Weyers, J.D.B., Hillman, J.R.: Plants fibres - Botany, chemistry and processing for industrial use. J. Sci. Food Agric. 62(1), 1–20 (1993). https://doi.org/10.1002/jsfa.2740620102

    Article  Google Scholar 

  47. Carvalheiro, F., Esteves, M.P., Parajo, J.C., Pereira, H., Girio, F.M.: Production of oligosaccharides by autohydrolysis of brewery's spent grain. Bioresour. Technol. 91(1), 93–100 (2004). https://doi.org/10.1016/s0960-8524(03)00148-2

    Article  Google Scholar 

  48. Rocha, G.J.M., Martin, C., da Silva, V.F.N., Gomez, E.O., Goncalves, A.R.: Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111, 447–452 (2012). https://doi.org/10.1016/j.biortech.2012.02.005

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and by the Fundação de Amparo à Pesquisa no Estado de Minas Gerais (FAPEMIG)—Process CEX—APQ-01424-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo F. Teófilo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, P.S., Barbosa, M.H.P., de Faria, B.d.F.H. et al. Improvements in the Extractive and Carbohydrate Analysis of Sugarcane Bagasse. Waste Biomass Valor 12, 3727–3740 (2021). https://doi.org/10.1007/s12649-020-01268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01268-y

Keywords

Navigation