Skip to main content

Advertisement

Log in

Valorization of Lignocellulosic Biomass and Agri-food Processing Wastes for Production of Glucan Polymer

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Agro-industrial wastes and lignocellulosic biomass represents plentiful renewable carbon-based resources in the environment. An increasing interest has been shown by the researchers to utilize agri-food processing wastes and lignocellulosic biomass for production of value-added substances and biochemicals. Glucans are known as a biopolymeric chemical which is derived from D-glucose with valuable medical applications. Glucans could be extracted from different organisms including plants, fungi, bacteria and algae. In this context, agricultural and food processing wastes as well as lignocellulosic biomass have been known as low-cost feedstocks for production of glucan polymers. Hence, in this review, firstly an overview of the current glucan-derived sources including plant and microbial sources is given. Subsequently, a comprehensive review of various wastes obtained from the agri-food processing industry and plant biomass used in the production of glucan-based biopolymers is presented with providing the comparison of different sources used for the production of glucan polymer. Finally, the production of glucan polymer from agri-food processing wastes is evaluated in aspect of biorefinery.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Zaafouri, K., Ziadi, M., Trabelsi, A.B.H., Mekni, S., Aïssi, B., Alaya, M., Bergaoui, L., Hamdi, M.: Optimization of hydrothermal and diluted acid pretreatments of Tunisian Luffa cylindrica (L.) fibers for 2G bioethanol production through the cubic central composite experimental design CCD: response surface methodology. BioMed. Res. Int. (2017). https://doi.org/10.1155/2017/9524521

    Article  Google Scholar 

  2. Kang, Q., Appels, L., Tan, T., Dewil, R.: Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci. World J. (2014). https://doi.org/10.1155/2014/298153

    Article  Google Scholar 

  3. Ajila, C.M., Brar, S.K., Verma, M., Tyagi, R.D., Godbout, S., Valéro, J.R.: Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 32, 382–400 (2012)

    Google Scholar 

  4. Dailin, D.J., Low, L.Z.M.I., Kumar, K., Malek, R.A., Natasya, K.H., Keat, H.C., Sukmawati, D., El-Enshasy, H.: Agro-Industrial waste: a potential feedstock for pullulan production. Biosci. Biotech. Res. Asia. 16, 229–250 (2019)

    Google Scholar 

  5. Asada, C., Sasaki, C., Suzuki, A., et al.: Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valor. 9, 2423–2432 (2018)

    Google Scholar 

  6. Kang, S.H., Kim, H.R., Kim, J.H., Ahn, B.H., Kim, T.W., Kim, J.E.: Identification of wild yeast strains and analysis of their β-glucan and glutathione levels for use in Makgeolli brewing. Mycobiol. 42, 361–367 (2014)

    Google Scholar 

  7. Avni, S., Ezove, N., Hanani, H., Yadid, I., Karpovsky, M., Hayby, H., Gover, O., Hadar, Y., Schwartz, B., Danay, O.: Olive Mill waste enhances α-glucan content in the edible mushroom Pleurotus eryngii. Int. J. Mol. Sci. 18, 1564 (2017)

    Google Scholar 

  8. Bittencourt, V.C., Figueiredo, R.T., da Silva, R.B., Mourão-Sá, D.S., Fernandez, P.L., Sassaki, G.L., Mulloy, B., Bozza, M.T., Barreto-Bergter, E.: An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J. Biol. Chem. 281, 22614–22623 (2006)

    Google Scholar 

  9. Wiater, A., Paduch, R., Pleszczyńska, M., Próchniak, K., Choma, A., Kandefer-Szerszeń, M., Szczodrak, J.: α-(1 → 3)-D-glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnol. Lett. 33, 787–795 (2011)

    Google Scholar 

  10. Puanglek, S., Kimura, S., Enomoto-Rogers, Y., Kabe, T., Yoshida, M., Wada, M., Iwata, T.: In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci. Rep. 6, 30479 (2016)

    Google Scholar 

  11. Moriya, N., Moriya, Y., Nomura, H., Kusano, K., Asada, Y., Uchiyama, H., Park, E.Y., Okabe, M.: Improved β-glucan yield using an Aureobasidium pullulans M-2 mutant strain in a 200-l pilot scale fermentor targeting industrial mass production. Biotechnol. Bioprocess. Eng. 18, 1083–1089 (2013)

    Google Scholar 

  12. Varelas, V., Tataridis, P., Liouni, M., Nerantzis, E.T.: Valorization of winery spent yeast waste biomass as a new source for the production of β-glucan. Waste Biomass Valor. 7, 807–817 (2016)

    Google Scholar 

  13. Cunha, M.A.A., Turmina, J.A., Ivanov, R.C., Barroso, R.R., Marques, P.T., Fonseca, E.A., Fortes, Z.B., Dekker, R.F., Khaper, N., Barbosa, A.M.: Lasiodiplodan, an exocellular (1–6)-b-D-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity. J. Ind. Microbiol. Biotechnol. 39, 1179–1188 (2012)

    Google Scholar 

  14. Jung, H.-K., Park, S.-C., Park, B.-K., Hong, J.-H.: Physiological activities of a β-glucan produced by Panebacillus polymyxa. Biotechnol. Lett. 30, 1545–1551 (2008)

    Google Scholar 

  15. Hong, J.-Y., Son, S.-H., Hong, S.-P., Yi, S.-H., Kang, S.H., Lee, N.-K., Paik, H.-D.: Production of β-glucan, glutathione, and glutathione derivatives by probiotic Saccharomyces cerevisiaeisolated from cucumber jangajji. LWT 100, 114–118 (2019)

    Google Scholar 

  16. Driscoll, M., Hansen, R., Ding, C., Cramer, D.E., Yan, J.: Therapeutic potential of various β-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol. Ther. 8, 218–225 (2009)

    Google Scholar 

  17. Garcia-Garcia, G., Stone, J., Rahimifard, S.: Opportunities for waste valorisation in the food industry—a case study with four UK food manufacturers. J. Clean. Prod. 211, 1339–1356 (2019)

    Google Scholar 

  18. Yoshimi, A., Miyazawa, K., Abe, K.: Function and biosynthesis of cell wall α-1,3-glucan in fungi. J. Fungi (Basel) 3, 63 (2017)

    Google Scholar 

  19. Geurtsen, J., Chedammi, S., Mesters, J., Cot, M., Driessen, N.N., Sambou, T., Kakutani, R., Ummels, R., Maaskant, J., Takata, H., Baba, O., Terashima, T., Bovin, N., Vandenbroucke-Grauls, C.M., Nigou, J., Puzo, G., Lemassu, A., Daffé, M., Appelmelk, B.J.: Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J. Immunol. 183, 5221–5231 (2009)

    Google Scholar 

  20. Gummadi, S.N., Kumar, K.: Production of extracellular water insoluble β-1,3-glucan (curdlan) from Bacillus sp. SNC07. Biotechnol. Bioprocess. Eng. 10, 546–551 (2005)

    Google Scholar 

  21. Bzducha-Wróbel, A., Koczoń, P., Błażejak, S., Kozera, J., Kieliszek, M.: Valorization of deproteinated potato juice water into β-glucan preparation of C. utilis origin: comparative study of preparations obtained by two isolation methods. Waste Biomass Valor. 11, 3257–3271 (2019)

    Google Scholar 

  22. Šantek, B., Felski, M., Friehs, K., Lotz, M.: Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng. Life. Sci. 10, 165–170 (2010)

    Google Scholar 

  23. Zechner-krpan, V., Petravić-Tominac, V., Panjkota-Krbavčić, I., Grba, S., Berković, K.: Potential application of yeast β-glucans in food industry. Agric. Conspec. Sci. 74, 277–282 (2009)

    Google Scholar 

  24. Jung, H.K., Hong, J.H., Park, S.C., Park, B.K., Nam, D.H., Kim, S.D.: Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol. Bioprocess. Eng. 12, 713–719 (2007)

    Google Scholar 

  25. Kalyanasundaram, G.T., Doble, M., Gummadi, S.N.: Production and downstream processing of (1–3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750. AMB Express. 2(31), 1–10 (2012)

    Google Scholar 

  26. Crognale, S., Federici, F., Petruccioli, M.: β-Glucan production by Botryosphaeria rhodina on undiluted olive-mill wastewaters. Biotechnol. Lett. 25, 2013–2015 (2003)

    Google Scholar 

  27. Jung, H.-K., Hong, J.-H., Park, S.-C., Park, B.-K., Nam, D.-H., Kim, S.-D.: Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol. Bioprocess. Eng. 12, 713–719 (2007)

    Google Scholar 

  28. Hilares, R.T., Resende, J., Orsi, A.C., Ahmed, M.A., Lacerda, M.T., da Silva, S.S., Santos, J.C.: Exopolysaccharide (pullulan) production from sugarcane bagasse hydrolysate aiming to favor the development of biorefineries. Int. J. Biol. Macromol. 127, 169–177 (2019)

    Google Scholar 

  29. Selbmann, L., Crognale, S., Petruccioli, M.: Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82 on raw and hydrolysed starchy materials. Lett. Appl. Microbiol. 34, 51–55 (2002)

    Google Scholar 

  30. Miranda, C.C.B., Dekker, R.F.H., C’olus, I., Zaia, C.T., Castro, I., Barbosa, A.M.: Botryosphaeran: a new fungal exopolysaccharide presenting antimutagenic, hypoglycaemic and hypocholesterolaemic activities in mice and rats. J. Biotechnol. 131, S58–S64 (2007)

    Google Scholar 

  31. Grün, C.H., Hochstenbach, F., Humbel, B.M., Verkleij, A.J., Sietsma, J.H., Klis, F.M., Kamerling, J.P., Vliegenthart, J.F.: The structure of cell wall alpha-glucan from fission yeast. Glycobiology 15, 245–257 (2005)

    Google Scholar 

  32. Nair, A.V., Gummadi, S.N.: Doble M Process optimization and kinetic modelling of cyclic (1 → 3,1 → 6)- β-glucans production from Bradyrhizobium japonicum MTCC120. J. Biotechnol. 226, 35–43 (2016)

    Google Scholar 

  33. Long, N.T., Ha, T.L.T., Son, H.N., Luan, L.Q.: Radiation degradation of β-glucan extracted from brewer’s yeast for enhancing growth promotion and immunostimulant activities on broilers. Int. J. Polym. Sci. (2019). https://doi.org/10.1155/2019/8901824

    Article  Google Scholar 

  34. Ishimoto, Y., Ishibashi, K.I., Yamanaka, D., Adachi, Y., Kanzaki, K., Iwakurac, Y., Ohno, N.: Production of low-molecular weight soluble yeast β-glucan by an aciddegradation method. Biol. Macromol. 107, 2269–2278 (2018)

    Google Scholar 

  35. Liu, Y., Liu, Y., Dana, H., Li, C., Liu, A., Chen, H., Lin, Q., Wu, W., Shen, L., Yin, P., Feng, X., Wang, J.: Structural elucidation and hepatoprotective activities of polysaccharides from a mutant mSM-105 of Catathelasma ventricosum with enhanced production of 1,6-β-glucan. Ind. Crop Prod. 130, 459–466 (2019)

    Google Scholar 

  36. Finkelman, M.A.: Pneumocystis jirovecii infection: Cell wall (1→3)-β-Dglucan biology and diagnostic utility. Crit. Rev. Microbiol. 36, 271–281 (2010)

    Google Scholar 

  37. Tkacz, J.S.: Gluean biosynthesis in fungi and its inhibition. In: Sutcliffe, J.A., et al. (eds.) Emerging targets in antibacterial and antifungal chemotherapy, pp. 495–523. Springer, Boston, MA (1992)

    Google Scholar 

  38. Ruiz-Herrera, J., Ortiz-Castellanos, L.: Cell wall glucans of fungi. A review. Cell Surf. 5, 100022 (2019)

    Google Scholar 

  39. Zheng, Z., Huang, Q., Luo, X., Xiao, Y., Cai, W., Ma, H.: Effects and mechanisms of ultrasound- and alkali-assisted enzymolysis on production of water-soluble yeast β-glucan. Bioresour. Technol. 273, 394–403 (2019)

    Google Scholar 

  40. Jacob, F.F., Striegel, L., Rychlik, M., Hutzler, M., Methner, F.J.: Spent yeast from brewing processes: a biodiverse starting material for yeast extract production. Ferment. 5, 1–18 (2019)

    Google Scholar 

  41. Singh, R.S., Kaur, N., Kennedy, J.F.: Pullulan production from agro-industrial waste and its applications in food industry: a review. Carbohyd. Polym. 217, 46–57 (2019)

    Google Scholar 

  42. Nurika, I., Suhartini, S., Barker, G.C.: Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus serpula lacrymans. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00581-5

    Article  Google Scholar 

  43. Potato waste. Dairy knowledge portal. https://www.dairyknowledge.in/article/potato-waste (2014). Accessed 25 Jan 2020

  44. Arapoglou, D., Varzakas, T., Vlyssides, A., Israilides, C.: Ethanol production from potato peel waste (PPW). Waste Manag. 30, 1898–1902 (2010)

    Google Scholar 

  45. Gösungur, Y., Uzunögullari, P., Dagbagli, S.: Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohyd. Polym. 83, 1330–1337 (2011)

    Google Scholar 

  46. Wu, S., Lua, M., Chena, J., Fanga, Y., Wu, L., Xu, Y., Wang, S.: Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans. Int. J. Biol. Macromol. 82, 740–743 (2016)

    Google Scholar 

  47. Huang, L.P., Jin, B., Lant, P., Zhou, J.: Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J. Chem. Technol. Biotechnol. 78, 899–906 (2003)

    Google Scholar 

  48. Kurcz, A., Błazejak, A., Kot, A.M., Bzducha-Wro’bel, A., Kieliszek, M.: Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis. Waste Biomass Valor. 9, 57–64 (2018)

    Google Scholar 

  49. Wu, S., Jin, Z., Tong, Q., Chen, H.: Sweet potato: A novel substrate for pullulan production by Aureobasidium pullulans. Carbohyd. Polym. 76, 645–649 (2009)

    Google Scholar 

  50. Govindan, N., Rajakumar, S., Ayyasamy, P.M.: Prevalence, screening and characterization of starch degrading bacteria from sago industry wastes. Int. J. Res. Appl. Sci. Eng. Technol. 6, 837–844 (2018)

    Google Scholar 

  51. Valeriano, L.H., Marques, G.L.L., Freitas, S.P., Couri, S., Penha, E.M., Gonçalves, M.M.M.: Cassava pulp enzymatic hydrolysate as a promising feedstock for ethanol production. Braz. Arch. Biol. Technol. 61(e18161214), 1–10 (2018)

    Google Scholar 

  52. Sugumaran, K.R., Ponnusami, V.: Conventional optimization of aqueous extraction of pullulan in solid-state fermentation of cassava bagasse and Asian palm kernel. Biocatal. Agric. Biotechnol. 10, 204–208 (2017)

    Google Scholar 

  53. Sugumaran, K.R., Jothi, P., Ponnusami, V.: Bioconversion of industrial solid waste-cassava bagasse for pullulan production in solid state fermentation. Carbohyd. Polym. 99, 22–30 (2014)

    Google Scholar 

  54. Ray, R.C., Moorthy, S.N.: Exopolysaccharide (pullulan) production from cassava starch residue by Aureobasidium pullulans strain MTTC 1991. J. Sci. Ind. Res. 66, 252–255 (2007)

    Google Scholar 

  55. Wainaina, S., Horváth, I.S., Taherzadeh, M.J.: Biochemicals from food waste and recalcitrant biomass via syngas fermentation: a review. Bioresour. Technol. 248, 113–121 (2018)

    Google Scholar 

  56. Salah, R.B., Jaouadi, B., Bouaziz, A., Chaari, K., Blecker, C., Derrouane, C., Attia, H., Besbes, S.: Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466: Purification, rheological and physico-chemical characterization. LWT 44, 1026–1034 (2011)

    Google Scholar 

  57. Clarke, M.A.: Syrups. In: Caballero, B. (ed.) Encyclopedia of Food Sciences and Nutrition, pp. 5711–5717. Elsevier, Amsterdam (2003)

    Google Scholar 

  58. Israilides, C., Smith, A., Harthill, J., Branett, C., Bambalov, G., Scanlon, B.: Pullulan content of the ethanol precipitate from fermented agro-industrial wastes. Appl. Microbiol. Biotechnol. 49, 613–617 (1998)

    Google Scholar 

  59. Goksungur, Y., Ucan, A., Guvenc, U.: Production of pullulan from beet molasses and synthetic medium by Aureobasidium pullulans. Turkish. J. Biol. 28, 23–30 (2004)

    Google Scholar 

  60. Srikanth, S., Swathi, M., Tejaswini, M., Sharmila, G., Muthukumarana, C., Jaganathan, M.K., Tamilarasan, K.: Statistical optimization of molasses based exopolysaccharide and biomass production by Aureobasidium pullulans MTCC 2195. Biocatal. Agric. Biotechnol. 3, 7–12 (2014)

    Google Scholar 

  61. Israilides, C., Scanlon, B., Smith, A., Harding, S.E., Jumel, K.: Characterization of pullulans produced from agro-industrial wastes. Carbohyd. Polym. 25, 203–209 (1994)

    Google Scholar 

  62. Dwyer, K., Hosseinian, F., Rod, M.: The market potential of grape waste alternatives. J. Food. Res. 3, 91–106 (2014)

    Google Scholar 

  63. Saputro, A.D., Walle, D.V., Dewettinck, K.: Palm sap sugar: a review. Sugar Tech 21, 862–867 (2019)

    Google Scholar 

  64. Vijayendra, S.V.N., Bansal, D., Prasad, M.S., Nand, K.: Jaggery: A novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process. Biochem. 37, 359–364 (2001)

    Google Scholar 

  65. Mehta, A., Prasad, G.S., Choudhury, A.R.: Cost effective production of pullulan from agri-industrial residues using response surface methodology. Int. J. Biol. Macromol. 64, 252–256 (2014)

    Google Scholar 

  66. Roukas, T., Biliaderis, C.G.: Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl. Biochem. Biotechnol. 55, 27–44 (1995)

    Google Scholar 

  67. Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valor. 10, 235–251 (2019)

    Google Scholar 

  68. Abdeshahian, P., Dashti, M.G., Kalil, M.S., Yusoff, W.M.W.: Production of biofuel using biomass as a sustainable biological resource. Biotechnology 9, 274–282 (2010)

    Google Scholar 

  69. El-Naggar, N.E.A., Deraz, S., Khalil, A.: bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology 13, 1–21 (2014)

    Google Scholar 

  70. Olver, B., Van Dyk, J.S., Beukes, N., Pletschke, B.I.: Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates. 3 Biotech 1, 187–192 (2011)

    Google Scholar 

  71. Lee, H.V., Hamid, S.B.A., Zain, S.K.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World. J. (2014). https://doi.org/10.1155/2014/631013

    Article  Google Scholar 

  72. Mulyaningtyas, A., Sediawan, W.B.: Effect of combined pretreatment of lignocellulose and the kinetics of its subsequent bioconversion by Aspergillus niger. Biocatal. Agric. Biotechnol. 21, 101292 (2019)

    Google Scholar 

  73. Jia, Z., Zheng, Y., Zhou, J.: Effects of different pretreatment methods on the enzymatic hydrolysis of cassava residue. BioRes. 14, 6060–6078 (2019)

    Google Scholar 

  74. Chaudhary, N., Qazi, J.I., Irfan, M.: Isolation and identification of cellulolytic and ethanologenic bacteria from soil. Iran J. Sci. Technol. Trans. Sci. 41, 551–555 (2017)

    Google Scholar 

  75. Philippini, R.R., Martiniano, S.E., Chandel, A.K., Carvalho, W., Silva, S.S.: Pretreatment of sugarcane bagasse from cane hybrids: effects on chemical composition and 2G sugars recovery. Waste Biomass Valor. 10, 1561–1570 (2019)

    Google Scholar 

  76. Hilares, R.T., Orsi, C.A., Ahmed, M.A., Marcelino, P.F., Menegatti, C.R., da Silva, S.S., Santos, J.C.: Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. Bioresour. Technol. 230, 76–81 (2017)

    Google Scholar 

  77. Chen, Y., Guo, J., Li, F., Liu, M., Zhang, X., Guo, X., et al.: Production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82 with pH control and DL-dithiothreitol addition. Biotechnol. Bioprocess. Eng. 288, 282–288 (2014)

    Google Scholar 

  78. Abdeshahian, P., Ascencio, J.J., Philippini, R.R., Antunes, F.A.F., dos Santos, J.C., da Silva, S.S.: Utilization of sugarcane straw for production of β-glucan biopolymer by Lasiodiplodia theobromae CCT 3966 in batch fermentation process. Bioresour. Technol. 314, 123716 (2020)

    Google Scholar 

  79. Radulović, M.D., Cvetković, O.G., Nikolić, S.D., Dordević, D.S., Jakovljević, D.M., Vrvić, M.M.: Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour. Technol. 99, 6673–6677 (2008)

    Google Scholar 

  80. LeDuy, A., Boa, J.M.: Pullulan production from peat hydrolysate. Can. J. Microbiol. 29, 143–146 (1983)

    Google Scholar 

  81. West, T.P., Peterson, J.L.: Production of the polysaccharide curdlan by an Agrobacterium strain grown on a plant biomass hydrolysate. Can. J. Microbiol. 60, 53–56 (2014)

    Google Scholar 

  82. West, T.P.: Effect of nitrogen source concentration on curdlan production by Agrobacterium sp ATCC 31749 grown on prairie cordgrass hydrolysates. Prep. Biochem. Biotechnol. 46, 85–90 (2016)

    Google Scholar 

  83. Azman, N.F., Abdeshahian, P., Kadier, A., Al-Shorgani, N.K.N., Salih, N.K.M., Lananan, I., Hamid, A.A., Kalil, M.S.: Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int. J. Hydrog. Energy. 41, 145–156 (2016)

    Google Scholar 

  84. Wang, D., Ju, X., Zhou, D., Wei, G.: Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresour. Technol. 164, 12–19 (2014)

    Google Scholar 

  85. Singh, R.S., Kaur, N.: Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans. Food. Sci. Biotechnol. 28, 1507–1520 (2019)

    Google Scholar 

  86. Sharma, N., Prasad, G.S., Choudhury, A.R.: Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohyd. Polym. 93, 95–101 (2013)

    Google Scholar 

  87. Hafez, A.M.A., Abdelhady, H.M., Sharaf, M.S., El-Tayeb, T.S.: Bioconversion of various industrial by-products and agricultural wastes into pullulan. Int. J. Appl. Sci. 3, 1416–1425 (2007)

    Google Scholar 

  88. Wang, Y., Wen, J., Dongmei, J., Piao, C., Liu, J., Yu, H., Liu, J.: Response surface optimization of the nitrogen source for pullulan production by Aureobasidium pullulans CGMCC3945 with corn steep liquor. In: Proceedings Int Forum Energy Environment Sustainable Development, pp. 844–850 (2016)

  89. Papaspyridi, L.M., Katapodis, P., Zagou, Z.G., Kapsanaki, E.: Growth and biomass production with enhanced β-glucan and dietary fibre contents of Ganoderma austral ATHUM 4345 in a batch-stirred tank bioreactor. Eng. Life. Sci. 11, 65–74 (2011)

    Google Scholar 

  90. Rakowska, A., Sadowska, A., Dybkowska, E., Świderski, F.: Spent yeasts as natural source of functional food additives. Rocz. Panstw. Zakl. Hig. 68, 115–121 (2017)

    Google Scholar 

  91. Akermann, A., Weiermüller, J., Christmann, J., Guirande, L., Glaser, G., Knaus, A., Ulber, R.: Brewers’ spent grain liquor as a feedstock for lactate production with Lactobacillus delbrueckii subsp. lactis. Eng. Life. Sci. 20, 168–180 (2020)

    Google Scholar 

  92. Xiros, C., Topakas, E., Katapodis, P., Christakopoulos, P.: Hydrolysis and fermentation of brewer's spent grain by Neurospora crassa. Bioresour. Technol. 99, 5427–5435 (2008)

    Google Scholar 

  93. Roukas, T.: Pullulan production from brewery wastes by Aureobasidium pullulans. World. J. Microbiol. Biotechnol. 15, 447–450 (1999)

    Google Scholar 

  94. Sangamithra, A., John, S.G., Sorna Prema, R., Chandrasekar, V., Sasikala, S., Hasker, E.: Coconut: an extensive review on value added products. Indian Food. Ind. Mag. 32, 29–36 (2013)

    Google Scholar 

  95. Thirumavalavan, K., Manikkadan, T.R., Dhanasekar, R.: Pullulan production from coconut by products by Aureobasidium pullulans. Afr. J. Biotechnol. 8, 254–258 (2009)

    Google Scholar 

  96. Sugumaran, K.R., Gowthami, E., Swathi, B., Elakkiya, S., Srivastava, S.N., Ravikumar, R., Gowdhaman, D., Ponnusami, V.: Production of pullulan by Aureobasidium pullulans from Asian palm kernel: a novel substrate. Carbohyd. Polym. 92, 697–703 (2013)

    Google Scholar 

  97. Israilides, C., Smith, A., Bambalov, G.: Production of pullulan from agro-industrial wastes. In: Proceedings of the 6th European Congress on Biotechnology. Vol. 2, p. 362 (1993)

  98. Youssef, F., Biliaderis, C.G., Rouka, T.: Enhancement of pullulan production by Aureobasidium pullulans in batch culture using olive oil and sucrose as carbon sources. Appl. Biochem. Biotechnol. 74, 13–30 (1998)

    Google Scholar 

  99. Reverberi, M., Di Mario, F., Tomati, U.: β-Glucan synthase induction in mushrooms grown on olive mill wastewaters. Appl. Microbiol. Biotechnol. 66, 217–225 (2004)

    Google Scholar 

  100. Berkheiser, K.: Wheat Bran: nutrition, benefits and more. https://www.healthline.com/nutrition/wheat-bran(2018). Accessed 25 Jan 2020

  101. Abdeshahian, P., Samat, N., Yusoff, W.M.W.: Utilization of palm kernel cake for production of β-glucosidase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor. Biotechnology 9, 17–24 (2010)

    Google Scholar 

  102. Palm kernel oil. https://gustavheess.de/index.php?option=com_content&view=article&id=328%3Apalmkernoel&catid=40%3Achemie-und-technik&Itemid=127&lang=en (2020).Accessed 25 Jan 2020

  103. Sugumaran, K.R., Shobana, P., Balaji, P.M., Ponnusami, V., Gowdhaman, D.: Statistical optimization of pullulan production from Asian palm kernel and evaluation of its properties. Int. J. Biol. Macromol. 66, 229–235 (2014)

    Google Scholar 

  104. Sugumaran, K.R., Sindhu, R.V., Sukanya, S., Aiswarya, N., Ponnusami, V.: Statistical studies on high molecular weight pullulan production in solid state fermentation using jack fruit seed. Carbohyd. Polym. 98, 854–860 (2013)

    Google Scholar 

  105. Sharmila, G., Muthukumaran, C., Nayan, G., Nidhi, B.: Extracellular biopolymer production by Aureobasidium pullulans MTCC 2195 using jackfruit seed powder. J. Polym. Environ. 21, 487–494 (2013)

    Google Scholar 

  106. Joshi, C., Khare, S.K.: Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour. Technol. 102, 1722–1726 (2011)

    Google Scholar 

  107. Choudhury, A.R., Sharma, N., Prasad, G.S.: De-oiled jatropha seed cake is a useful nutrient for pullulan production. Microb. Cell. Fact. 11, 39 (2012)

    Google Scholar 

  108. Mongkontanawat, N., Wasikadilok, N., Phuangborisut, S., Chanawanno, T., Khunphutthiraphi, T.: β-Glucan production of Saccharomyces cerevisiae by using malva nut juice production wastewater. Int. Food. Res. J. 25, 499–503 (2018)

    Google Scholar 

  109. Seo, H.-P., Son, C.-W., Chung, C., Jung, D.-I., Kim, S.-K., Gross, R., Kaplan, D.L., Lee, J.-W.: Production of highmolecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour. Technol. 95, 293–299 (2004)

    Google Scholar 

  110. Sena, R.F., Costelli, M.C., Gibson, L.H., Coughlin, R.W.: Enhanced production of pullulan by two strains of A. pullulans with different concentrations of soybean oil in sucrose solution in batch fermentations. Braz. J. Chem. Eng. 23, 507–515 (2006)

    Google Scholar 

  111. Sheoran, S.K., Kumar, D.K., Tiwari, D.P., Singh, B.P.: Directive production of pullulan by altering cheap source of carbons and nitrogen at 5 L bioreactor level. Int. Scholarly. Res. Not. Chem. Eng. (2012). https://doi.org/10.5402/2012/867198

    Article  Google Scholar 

  112. Muramatsu, D., Okabe, M., Takaoka, A., Kida, H., Iwai, A.: Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced Thrombospondin-1expression. Sci. Rep. 7(2831), 1–10 (2017)

    Google Scholar 

  113. Roukas, T.: Pullulan production from deproteinized whey by Aureobasidium pullulans. J. Ind. Microbiol. Biotechnol. 22, 617–621 (1999)

    Google Scholar 

  114. Zhu, F., Du, B., Xu, B.: A critical review on production and industrial applications of betaglucans. Food Hydrocolloids 52, 275–288 (2016)

    Google Scholar 

  115. Mtaita, T.A.: Food. In: Hazeltine, B., Bull, C. (eds.) Field Guide to Appropriate Technology, pp. 277–480. Elsevier, Amsterdam (2003)

    Google Scholar 

  116. Rowe, J.B., Choct, M., Pethick, D.W.: Processing cereal grains for animal feeding. Aust. J. Agric. Res. 50, 721–736 (1999)

    Google Scholar 

  117. Vasile, A.J., Andreea, I.R., Popescu, G.H., Elvira, N., Marian, Z.: Implications of agricultural bioenergy crop production and prices in changing the land use paradigm—The case of Romania. Land Use Policy 50, 399–407 (2016)

    Google Scholar 

  118. Azeem, M., Batool, F., Iqbal, N., Haq, I.H.: Algal-based biopolymers. In: Zia, K.M., Zuber, M., Ali, M. (eds.) Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Materials Science, pp. 1–31. Elsevier, Amsterdam (2017)

    Google Scholar 

  119. Delbarre-Ladrat, C., Sinquin, C., Lebellenger, L., Zykwinska, A., Colliec-Jouault, S.: Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front. Chem. 2, 85 (2014)

    Google Scholar 

  120. IEA bioenergy Task 42 on biorefineries: co-production of fuels, chemicals, power and materials from biomass. Minutes of the third Task meeting, Copenhagen, Denmark. https://www.biorefinery.nl/ieabioenergy-task42/ (2007). Accessed 14 April 2020

  121. Özdenkçi, K., De Blasio, C., Muddassar, H.R., Melin, K., Oinas, P., Koskinen, J., Sarwar, G., Järvinen, M.: A novel biorefinery integration concept for lignocellulosic biomass. Energy. Convers. Manag. 149, 974–987 (2017)

    Google Scholar 

  122. Cherubini, F.: The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy. Convers. Manag. 51, 1412–1421 (2010)

    Google Scholar 

  123. Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M., Syamsiro, M., Ismail, I.M.I., Pant, P.: Waste biorefineries: enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117 (2017)

    Google Scholar 

  124. Arancon, R.A.D., Lin, C.S.K., Chan, K.M., Kwan, T.H., Luque, R.: Advances on waste valorization: new horizons for a more sustainable society. Energy Sci. Eng. 1, 53–71 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the São Paulo Research Foundation – FAPESP (FAPESP Process No. 2018/14095-7) in São Paulo, Brazil. This work also financially supported by Thematic Project of FAPESP (FAPESP Process No. 2016/10636-8 ). The authors would like to acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), No. 303943/2017-3, Brazil. The authors would also like to acknowledge PROFIDES – México for their approved bilateral project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Abdeshahian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeshahian, P., Ascencio, J.J., Philippini, R.R. et al. Valorization of Lignocellulosic Biomass and Agri-food Processing Wastes for Production of Glucan Polymer. Waste Biomass Valor 12, 2915–2931 (2021). https://doi.org/10.1007/s12649-020-01267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01267-z

Keywords