Pilot-Scale Unit for Supercritical Water Gasification of Organic Matter


This study describes the construction of an experimental continuous pilot-scale facility for supercritical water gasification of organic matter. The continuous pilot plant (flow rate 1 kg/min) is described in technical detail. The typical course of the heating-up phase of the supercritical loop is discussed, including observed temperature—specific comportment near/beyond the critical point (380–400 °C). This specific comportment made it very difficult to switch the loop on to the supercritical conditions. Heat recuperation in the loop equipped with a 12 m tube in the tube heat exchanger reached 67–73%. Finally, the gasification experiments with model compounds confirmed both TOC decrease in water and gas production (hydrogen, methane, carbon dioxide, carbon monoxide, higher hydrocarbons). Carbon conversion efficiency reached a maximum of 24% (547 °C, 24.5 MPa, 12 s residence time) in the case of propan-2-ol with initial concentration of 41.8 g/L with the addition of 5 g/L of potassium carbonate.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Chakinala, A.G., Kumar, S., Kruse, A., Kersten, S.R.A., van Swaaij, W.P.M., Brilman, D.W.F.: Supercritical water gasification of organic acids and alcohols: the effect of chain length. J. Supercrit. Fluid. (2013). https://doi.org/10.1016/j.supflu.2012.11.013

    Article  Google Scholar 

  2. 2.

    Kruse, A., Dahmen, N.: Water—a magic solvent for biomass conversion. J. Supercrit. Fluid. (2015). https://doi.org/10.1016/j.supflu.2014.09.038

    Article  Google Scholar 

  3. 3.

    Marrone, P.A.: Supercritical water oxidation—current status of full-scale commercial activity for waste destruction. J. Supercrit. Fluid. (2013). https://doi.org/10.1016/j.supflu.2012.12.020

    Article  Google Scholar 

  4. 4.

    Basu, P.: Hydrothermal Gasification of Biomass. Biomass Gasification and Pyrolysis, pp. 229–267. Academic Press, Boston (2010)

    Chapter  Google Scholar 

  5. 5.

    Kruse, A.: Hydrothermal biomass gasification. J. Supercrit. Fluid. (2009). https://doi.org/10.1016/j.supflu.2008.10.009

    Article  Google Scholar 

  6. 6.

    Matsumura, Y., Minowa, T., Potic, B., Kersten, S.R.A., Prins, W., van Swaaij, W.P.M., van de Beld, B., Elliott, D.C., Neuenschwander, G.G., Kruse, A., Antal Jr., M.J.: Biomass gasification in near-and super-critical water: status and prospects. Biomass Bioenergy (2005). https://doi.org/10.1016/j.biombioe.2005.04.006

    Article  Google Scholar 

  7. 7.

    Kumar, M., Oyedun, A.O., Kumar, A.: A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sust. Energ. Rev. (2018). https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  8. 8.

    Amin, S., Reid, R.C., Modell, M.: Reforming and Decomposition of Glucose in an Aqueous Phase. Intersociety Conference on Environmental Systems. American Society of Mechanical Engineers, New York (1975)

    Google Scholar 

  9. 9.

    Casademont, P., García-Jarana, M., Sánchez-Oneto, J., Portela, J.R., Martinez de la Ossa, E.J.: Supercritical water gasification: a patents review. Rev. Chem. Eng. (2016). https://doi.org/10.1515/revce-2016-0020

    Article  Google Scholar 

  10. 10.

    Susanti, R.F., Veriansyah, B., Kim, J.D., Kim, J., Lee, Y.W.: Continuous supercritical water gasification of isooctane: a promising reactor design. Int. J. Hydrogen Energy (2010). https://doi.org/10.1016/j.ijhydene.2009.12.157

    Article  Google Scholar 

  11. 11.

    Peng, G., Vogel, F., Refardt, D., Ludwig, C.H.: Catalytic supercritical water gasification: continuous methanization of Chlorella vulgaris. Ind. Eng. Chem. Res. (2017). https://doi.org/10.1021/acs.iecr.7b00042

    Article  Google Scholar 

  12. 12.

    Sınağ, A., Kruse, A., Rathert, J.: Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind. Eng. Chem. Res. (2004). https://doi.org/10.1016/j.supflu.2012.07.010

    Article  Google Scholar 

  13. 13.

    Gasafi, E., Reinecke, M.Y., Kruse, A., Schebek, L.: Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass Bioenergy (2008). https://doi.org/10.1016/j.biombioe.2008.02.021

    Article  Google Scholar 

  14. 14.

    Do, T.X., Mujahid, R., Lim, S.H., Kim, J.-K., Lim, Y.-I., Kim, J.: Techno-economic analysis of bio heavy-oil production from sewage sludge using supercritical and subcritical water. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2019.10.138

    Article  Google Scholar 

  15. 15.

    Chen, J., Xu, W., Zuo, H., Wu, X., Jiaqiang, E., Wang, T., Thang, F., Lu, N.: System development and environmental performance analysis of a solar-driven supercritical water gasification pilot plant for hydrogen production using life cycle assessment approach. Energy Convers. Manag. (2019). https://doi.org/10.1016/j.enconman.2019.01.041

    Article  Google Scholar 

  16. 16.

    Amrullah, A., Matsumura, Y.: Supercritical water gasification of sewage sludge in continuous reactor. Bioresour. Technol. 249, 276–283 (2018). https://doi.org/10.1016/j.biortech.2017.10.002

    Article  Google Scholar 

  17. 17.

    Boukis, N., Galla, U., Müller, H., Dinjus, E.: Biomass gasification in supercritical water. Experimental progress achieved with the VERENA pilot plant. In: Proceedings from 15th European biomass conference & exhibition. pp. 1013–1016 (2007)

  18. 18.

    Schmidt, E.: Properties of Water and Steam in SI-Units. Springer, Berlin (1979)

    Google Scholar 

  19. 19.

    Lee, I.G., Ihm, S.K.: Catalytic gasification of glucose over Ni/activated charcoal in supercritical water. Ind. Eng. Chem. Res. (2009). https://doi.org/10.1021/ie8012456

    Article  Google Scholar 

  20. 20.

    Behnia, I., Yuan, Z., Charpentier, P., Xu, C.: Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: effects of metal catalysts and supports. Fuel Process. Technol. (2016). https://doi.org/10.1016/j.fuproc.2015.11.006

    Article  Google Scholar 

  21. 21.

    Caputo, G., Rubio, P., Scargiali, F., Marotta, G., Brucato, A.: Experimental and fluid dynamic study of continuous supercritical water gasification of glucose. J. Supercrit. Fluid. (2016). https://doi.org/10.1016/j.supflu.2015.09.022

    Article  Google Scholar 

  22. 22.

    Byrd, A.J., Pant, K.K., Gupta, R.B.: Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel (2008). https://doi.org/10.1016/j.fuel.2008.04.024

    Article  Google Scholar 

  23. 23.

    Guo, S., Guo, L., Cao, C., Yin, J., Lu, Y., Zhang, X.: Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int. J. Hydrogen Energy (2012). https://doi.org/10.1016/j.ijhydene.2011.12.135

    Article  Google Scholar 

  24. 24.

    Pairojpiriyakul, T., Kiatkittipong, W., Assabumrungrat, S., Croiset, E.: Hydrogen production from supercritical water reforming of glycerol in an empty Inconel 625 reactor. Int. J. Hydrogen Energy (2014). https://doi.org/10.1016/j.ijhydene.2013.09.148

    Article  Google Scholar 

  25. 25.

    DiLeo, G.J., Savage, P.E.: Catalysis during methanol gasification in supercritical water. J. Supercrit. Fluid. (2006). https://doi.org/10.1016/j.supflu.2006.01.004

    Article  Google Scholar 

  26. 26.

    Gadhe, J.B., Gupta, R.B.: Hydrogen production by methanol reforming in supercritical water: catalysis by in-situ-generated copper nanoparticles. Int. J. Hydrogen Energy (2007). https://doi.org/10.1016/j.ijhydene.2006.10.050

    Article  Google Scholar 

  27. 27.

    Peng, G., Ludwig, C., Vogel, F.: Ruthenium dispersion: a key parameter for the stability of supported ruthenium catalysts during catalytic supercritical water gasification. ChemCatChem. (2016). https://doi.org/10.1002/cctc.201500995

    Article  Google Scholar 

  28. 28.

    Purkarová, E., Ciahotný, K., Šváb, M., Skoblia, S., Zoderová, L., Beňo, Z.: Supercritical water gasification of isopropylalcohol on vertical continuous apparatus: process conditions. Paliva. 9, 126–131 (2016)

    Article  Google Scholar 

Download references


This work was supported by the Technology Agency of the Czech Republic [Grant No. TA03011105].

Author information



Corresponding author

Correspondence to Marek Šváb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šváb, M., Purkarová, E. Pilot-Scale Unit for Supercritical Water Gasification of Organic Matter. Waste Biomass Valor 12, 4113–4121 (2021). https://doi.org/10.1007/s12649-020-01266-0

Download citation


  • Supercritical water
  • Gasification
  • Pilot-scale unit
  • Heat recuperation