Skip to main content
Log in

Protein Enrichment of Cassava-Based Dried Distiller’s Grain by Solid State Fermentation Using Trichoderma Harzianum and Yarrowia Lipolytica for Feed Ingredients

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cassava-based dried distiller’s grain (Cassava-based DDG) is known as a by-product of the bio-ethanol industry with low nutritional value due to the presence of cyanide and to the low content of protein. More value can be added to cassava-based DDG through solid-state fermentation (SSF) using mold and yeast. SSF were conducted with cassava-based DDG in 8 and 5 days of fermentation, respectively. Under optimal conditions, the crude protein fraction of cassava-based DDG fermented by Trichoderma harzianum BiomaTH1 or Yarrowia lipolytica W29 was increased from 11.84% DM for unfermented sample to 15.29 and 14.06% DM, respectively. In addition, the total amino acids of fermented samples using T. harzianum and Y. lipolytica was increased from 11.01% DM to 13.86% DM and 12.39% DM along with an increase in the essential amino acids content which enhanced by 55% and 22%, respectively, including limiting amino acids in pig feeds. The in vitro protein digestibility was improved significantly from 82.5% to 89.2 and 86.9% for T. harzianum and Y. lipolytica fermentation, respectively. Beside increasing the nutritional value, the SSF showed a clear effect in reducing cyanide content of raw cassava DDG from 62.3 mg/kg DM to 24.3 and 53.6 mg/kg. The obtained results indicated that the protein enrichment of this bio-ethanol by-product using mold and yeast fermentation could be very promising to be used efficiently as a cheap and abundant source of essential amino acids for animal feed ingredients in Vietnam. The nutritional projection of adding this cheap ingredient was discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ministry-of-Industry-and-Trade: development strategy for bio-fuel production in Vietnam from 2007–2025 (Resolution: 177/2007/QĐ-TTg) (2007)

  2. Taranu, I., Nguyen, T.T., Pham, K.D., Gras, M.A., Pistol, G.C., Marin, D.E., Rotar, C., Habeanu, M., Ho, P.H., Le, T.M., Bui, T.T.H., Mai, D.V., Chu, K.S.: Rice and cassava distillers dried grains in Vietnam: nutritional values and effects of their dietary inclusion on blood chemical parameters and immune responses of growing pigs. Waste and Biomass Valorization 10(11), 3373–3382 (2019)

    Google Scholar 

  3. Gelinas, P., Barrette, J.: Protein enrichment of potato processing waste through yeast fermentation. Biores. Technol. 98(5), 1138–1143 (2007)

    Google Scholar 

  4. Ugwuanyi, J.O., Harvey, L.M., McNeil, B.: Protein enrichment of corn cob heteroxylan waste slurry by thermophilic aerobic digestion using Bacillusstearothermophilus. Biores. Technol. 99(15), 6974–6985 (2008)

    Google Scholar 

  5. Şişman, T., Gür, Ö., Doğan, N., Özdal, M., Algur, Ö.F., Ergon, T.: Single-cell protein as an alternative food for zebrafish, Danio rerio: a toxicological assessment. Toxicol. Ind. Health 29(9), 792–799 (2013)

    Google Scholar 

  6. Ezekiel, O.O., Aworh, O.C.: Solid state fermentation of cassava peel with Trichoderma viride (ATCC 36316) for protein enrichment. Int. J. Agric. Biol. Eng. 7, 667–674 (2013)

    Google Scholar 

  7. Harper, S., Lynch, J.: Colonization and decomposition of straw by fungi. Trans. Br. Mycol. Soc. 85(4), 655–661 (1985)

    Google Scholar 

  8. Abo Siada, O.A., Negm, M.S., Basiouny, M.E., Fouad, M.A., Elagroudy, S.: Protein enrichment of agro–industrial waste by trichoderma harzianum EMCC 540 through solid state fermentation for use as animal feed. J. Geogr. Environ. Earth Sci. Int. 13(4), 1–12 (2018)

    Google Scholar 

  9. Ahmed, S., Mustafa, G., Arshad, M., Rajoka, M.I.: Fungal biomass protein production from Trichoderma harzianum using rice polishing. BioMed Res. Int. (2017). https://doi.org/10.1155/2017/6232793

    Article  Google Scholar 

  10. Parrado, J., Bautista, J.: Protein enrichment of sunflower lignocellulosic fraction by Trichoderma harzianum S/G 2431 in low moisture content media. Biosci. Biotechnol. Biochem. 57(2), 317–318 (1993)

    Google Scholar 

  11. Muindi, P.J., Hanssen, J.F.: Nutritive value of cassava root meal enriched by Trichoderma harzianum for chickens. J. Sci. Food Agric. 32(7), 647–654 (1981)

    Google Scholar 

  12. Ritala, A., Häkkinen, S.T., Toivari, M., Wiebe, M.G.: Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Frontiers Microbiol. 8, 2009 (2017)

    Google Scholar 

  13. Wang, W., Wei, H., Alahuhta, M., Chen, X., Hyman, D., Johnson, D.K., Zhang, M., Himmel, M.E.: Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica. PLoS One 9(12), e111443 (2014)

    Google Scholar 

  14. Vong, W.C., Hua, X.Y., Liu, S.-Q.: Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT 90, 316–322 (2018)

    Google Scholar 

  15. Chrenková, M., Čerešňáková, Z., Formelová, Z., Poláčiková, M., Mlyneková, Z., & Fľak, P.: Chemical and nutritional characteristics of different types of DDGS for ruminants. J. Anim. Feed Sci. 21, 425–435 (2012)

    Google Scholar 

  16. Ajila, C., Brar, S., Verma, M., Tyagi, R., Godbout, S., Valéro, J.: Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 32(4), 382–400 (2012)

    Google Scholar 

  17. Lemke, U., Mergenthaler, M., Roßler, R., Huyen, L., Herold, P., Kaufmann, B., Zarate, A.V.: Pig production in Vietnam—a review. Pig News Inf. 29(2), 1R (2008)

    Google Scholar 

  18. Nguyen, T.N., Davis, D.A., Saoud, I.P.: Evaluation of alternative protein sources to replace fish meal in practical diets for juvenile tilapia, Oreochromis spp. J. World Aquaculture Soc. 40(1), 113–121 (2009)

    Google Scholar 

  19. Hong, T.T.T., Lien, P.T.B., Hai, D.T., Hang, P.T., Quan, N.H.: Protein-enriched cassava root pulp as partial replacement for fish meal in diets for growing pigs. Chem. Anal. 30(3), 97 (2017)

    Google Scholar 

  20. Zhang, Z.Y., Jin, B., Bai, Z.H., Wang, X.Y.: Production of fungal biomass protein using microfungi from winery wastewater treatment. Biores. Technol. 99(9), 3871–3876 (2008)

    Google Scholar 

  21. Spiehs, M., Whitney, M., Shurson, G.C.: Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80(10), 2639–2645 (2002)

    Google Scholar 

  22. Le, T.M., Nguyen, T.H., Pham, T.T., Nguyen, T.H., Le, T.L.C.: Analytical methods in fermentation technology. Science and Technology Publishing House, New York (2007)

    Google Scholar 

  23. Pohlandt, A.: A critical evaluation of methods applicable to the determination of cyanides. J. South Afr. Inst. Min. Metall. 83(1), 11–19 (1983)

    Google Scholar 

  24. AOAC: Official method 971.09. Official Methods of Analysis of AOAC International, 16th edition 5th revision. AOAC International: Gaithersburg, MD 20877–2417, USA. (1999).

  25. Ho, D.T., Pham, T.M., Nguyen, M.T.: Determination of total cyanide content in cassava and cassava residue. J. Fisher. Sci. Technol. (Vietnam) 1, 195–200 (2014)

    Google Scholar 

  26. Cooke, R., Maduagwu, E.: The effects of simple processing on the cyanide content of cassava chips. Int. J. Food Sci. Technol. 13(4), 299–306 (1978)

    Google Scholar 

  27. EFSA: Opinion of the Scientific Panel on contaminations in the food chain on a request from the Commision related to cyanogenic compounds as undesirable sustances in animal feed. EFSA J. 437, 1–67 (2007)

    Google Scholar 

  28. Camacho-Ruiz, L., Perez-Guerra, N., Roses, R.P.: Factors affecting the growth of Saccharomyces cerevisiae in batch culture and in solid sate fermentation. Electron. J. Environ. Agric. Food Chem. 2(5), 531–542 (2003)

    Google Scholar 

  29. Pandey, A.: Recent process developments in solid-state fermentation. Process Biochem. 27(2), 109–117 (1992)

    Google Scholar 

  30. Membrillo, I., Sánchez, C., Meneses, M., Favela, E., Loera, O.: Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Biores. Technol. 99(16), 7842–7847 (2008)

    Google Scholar 

  31. Guan, J., Yang, G., Yin, H., Jia, F., Wang, J.: Particle size for improvement of peptide production in mixed-culture solid-state fermentation of soybean meal and the corresponding kinetics. Am. J. Agr. For 2(1), 1–6 (2014)

    Google Scholar 

  32. Raimbault, M.: General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1(3), 26–27 (1998)

    Google Scholar 

  33. Ugalde, U., Castrillo, J.: Single cell proteins from fungi and yeasts. In: Khachatourians, G.G., Arora, D.K. (eds.) Applied Mycology and Biotechnology - Part of Volume: Agriculture and Food Production, vol. 2, pp. 123–149. Elsevier (2002). https://www.sciencedirect.com/science/article/abs/pii/S1874533402800089

  34. Gervais, P., Molin, P.: The role of water in solid-state fermentation. Biochem. Eng. J. 13(2–3), 85–101 (2003)

    Google Scholar 

  35. Zhang, J., Yang, Q.: Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genet. Mol. Res. 14(1), 1771–1781 (2015)

    Google Scholar 

  36. INRA-CIRAD-AFZ: Feed tables: Composition and nutritive values of feeds for cattle, sheep, goats, pigs, poultry, rabbits, horses and salmonids. (2004). Accessed 24/06 2019

  37. Singh, A., Shahid, M., Srivastava, M., Pandey, S., Sharma, A., Kumar, V.: Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol. Mycol. 3(1), 127–134 (2014)

    Google Scholar 

  38. Muindi, P.J., Hanssen, J.F.: Protein enrichment of cassava root meal by Trichoderma harzianum for animal feed. J. Sci. Food Agric. 32(7), 655–661 (1981)

    Google Scholar 

  39. Osama, A.S., Khaled, M.A., Abir, M.H.: Bioconversion of some agricultural wastes into animal feed by Trichoderma spp. J. Am. Sci. 9(6), 203–212 (2013)

    Google Scholar 

  40. Jach, M.E., Baj, T., Juda, M., Świder, R., Mickowska, B., Malm, A.: Statistical evaluation of growth parameters in biofuel waste as a culture medium for improved production of single cell protein and amino acids by Yarrowia lipolytica. AMB Express 10(1), 1–12 (2020)

    Google Scholar 

  41. Roussos, S., Raimbault, M., Prebois, J.-P., Lonsane, B.: Zymotis, a large scale solid state fermenter design and evaluation. Appl. Biochem. Biotechnol. 42(1), 37–52 (1993)

    Google Scholar 

  42. Bayitse, R., Hou, X., Laryea, G., Bjerre, A.-B.: Protein enrichment of cassava residue using Trichoderma pseudokoningii (ATCC 26801). AMB Express 5(1), 80 (2015)

    Google Scholar 

  43. Yang, S.S.: Protein enrichment of sweet potato residue with amylolytic yeasts by solid-state fermentation. Biotechnol. Bioeng. 32(7), 886–890 (1988)

    Google Scholar 

  44. Correia, R., Magalhaes, M., Macêdo, G.: Protein enrichment of pineapple waste with Saccharomyces cerevisiae by solid state bioprocessing. J. Sci. Ind. Res. 66, 259–262 (2007)

    Google Scholar 

  45. Moore, E.: Fundamentals of the fungi, 4th edn, pp. 251–258. Prentice Hall, Upper Saddle River, NJ (1996)

    Google Scholar 

  46. Yang, S.-S., Durand, A., Blachere, H.: Protein enrichment of sugar beet residue with conidia of Trichoderma Album by solid state fermentation. Chinese J. Microbiol. Immunol. 19(1), 69–80 (1986)

    Google Scholar 

  47. FAO: Food loss prevention in perishable crops. Food and Agricultural Organization of the United Nations Agricultural Services Bulletin No. 43 (1981). http://www.fao.org/3/s8620e/S8620E00.htm

  48. Oboh, G., Oladunmoye, M.: Biochemical changes in micro-fungi fermented cassava flour produced from low-and medium-cyanide variety of cassava tubers. Nutr. Health 18(4), 355–367 (2007)

    Google Scholar 

  49. Shi, C., He, J., Yu, J., Yu, B., Huang, Z., Mao, X., Zheng, P., Chen, D.: Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotechnol. 6(1), 13 (2015)

    Google Scholar 

  50. Jarrett, S., Ashworth, C.J.: The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 9(1), 1–11 (2018)

    Google Scholar 

  51. Toscano, L., Montero, G., Cervantes, L., Stoytcheva, M., Gochev, V., Beltrán, M.: Production and partial characterization of extracellular lipase from Trichoderma harzianum by solid-state fermentation. Biotechnol. Biotechnol. Equip. 27(3), 3776–3781 (2013)

    Google Scholar 

  52. Yan, J., Han, B., Gui, X., Wang, G., Xu, L., Yan, Y., Madzak, C., Pan, D., Wang, Y., Zha, G.: Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  53. D’Mello, J.F.: Amino acids in animal nutrition, 2nd edn. CABI Publishing, Wallingford (2003)

    Google Scholar 

  54. Ghanem, K.M.: Single cell protein production from beet pulp by mixed culture. Microbiologia 8(1), 39–43 (1992)

    Google Scholar 

  55. Bergner, H.: Determination of the protein quality of food and animal feed. Arch. Tierernahr. 45(4), 293–332 (1994)

    Google Scholar 

  56. Viet, T.Q., Trung, V.N., Van Cai, D., Van, N.T.: Nutrition, feeds and feeding for pig production in Vietnam: current status and future research-A review. (2014). http://livestock-fish.ilriwikis.org/images/3/30/Review_on_Feedstuff_for_Pigs_in_Vietnam_Final_Version_20.4.14.pdf

  57. Vietnam-Industry-and-Trade-Information-Centre (VITIC-Vinanet): Price of animal feed and feed ingredients. (2019). http://vinanet.vn/nong-san/

Download references

Acknowledgements

We thank French Embassy in Vietnam for providing PhD scholarship (Bourse d’excellence de l’Ambassade de France) and financial support for this work. We acknowledge the financial support from the Ministry of Science and Technology of Vietnam through the Grant ĐTĐL.CN-07/20. We also thank Jean-François Cavin, Florence Husson and Christine Rojas for their kind support and advice during experiments at AgroSup Dijon, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Ky Son.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, MD., Thanh, NT., Son, CK. et al. Protein Enrichment of Cassava-Based Dried Distiller’s Grain by Solid State Fermentation Using Trichoderma Harzianum and Yarrowia Lipolytica for Feed Ingredients. Waste Biomass Valor 12, 3875–3888 (2021). https://doi.org/10.1007/s12649-020-01262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01262-4

Keywords

Navigation