Abstract
In this work, it is proven that a biochar obtained from a commercial gasifier can be used as electrode material for supercapacitors (SC). This biochar was produced at 1000 °C from corn cob wastes (GAS), and was compared to an activated biochar obtained in a traditional lab pyrolysis process (LAB). Both biochars were characterized by different physicochemical techniques, observing their amorphous nature with well-developed microporosity dependent of their pretreatment and production methodology. Furthermore, a computational modeling based on Molecular Dynamics at the ReaxFF level was also performed to elucidate the geometry of the resulting microporous structure after simulated pyrolysis. X-ray structure and pore size distribution are in agreement with those results obtained via computational simulation. Both carbon materials were electrochemically evaluated in acidic electrolyte using 3 and 2 electrode systems, obtaining capacitances of 130 F g\(^{-1}\) (20 mV s\(^{-1}\)), and excellent performance compared to commercial activated carbons, with only about 10\(\%\) of capacitance loss after 5000 cycles. However, GAS performance in SC was higher than activated biochar due to its higher micropore volume. This study provides a novel useful application to use gasifier residues from agricultural biomass waste for energy storage devices.
Graphic Abstract

This is a preview of subscription content, access via your institution.
















References
Tchapda, A., Pisupati, S.: A review of thermal co-conversion of coal and biomass/waste. Energies 7(3), 1098 (2014). https://doi.org/10.3390/en7031098
Dhyani, V., Bhaskar, T.: A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 129, 695 (2018). https://doi.org/10.1016/j.renene.2017.04.035
Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: Biochar as an exceptional bioresource for energy. Agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz. 7(2), 201 (2016). https://doi.org/10.1007/s12649-015-9459-z
González-GarcÃa, P.: Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393 (2018). https://doi.org/10.1016/j.rser.2017.04.117
Abioye, A.M., Ani, F.N.: Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sustain. Energy Rev. 52, 1282 (2015). https://doi.org/10.1016/j.rser.2015.07.129
Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 30 Nov 2018
International Maize and Wheat Improvement Center. https://www.cimmyt.org/. Accessed 31 May 2019
Green to Energy. http://g2e.mx/qs.html. Accessed 31 May 2019
Molino, A., Chianese, S., Musmarra, D.: Biomass gasification technology: the state of the art overview. J. Energy Chem. 25(1), 10 (2016). https://doi.org/10.1016/j.jechem.2015.11.005
Watson, J., Zhang, Y., Si, B., Chen, W.T., de Souza, R.: Gasification of biowaste: a critical review and outlooks. Renew. Sustain. Energy Rev. 83, 1 (2018). https://doi.org/10.1016/j.rser.2017.10.003
Sansaniwal, S., Pal, K., Rosen, M., Tyagi, S.: Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sustain. Energy Rev. 72, 363 (2017). https://doi.org/10.1016/j.rser.2017.01.038
Anukam, A.I., Goso, B.P., Okoh, O.O., Mamphweli, S.N.: Studies on characterization of corn cob for application in a gasification process for energy production. J. Chem. 2017, 1 (2017). https://doi.org/10.1155/2017/6478389
San Miguel, G., DomÃnguez, M.P., Hernández, M., Sanz-Pérez, F.: Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass Bioenergy 47, 134 (2012). https://doi.org/10.1016/j.biombioe.2012.09.049
Ioannidou, O., Zabaniotou, A.: Agricultural residues as precursors for activated carbon production: a review. Renew. Sustain. Energy Rev. 11(9), 1966 (2007). https://doi.org/10.1016/j.rser.2006.03.013
Seredych, M., Hulicova-Jurcakova, D., Lu, G.Q., Bandosz, T.J.: Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11), 1475 (2008). https://doi.org/10.1016/j.carbon.2008.06.027
Puziy, A., Poddubnaya, O., Socha, R., Gurgul, J., Wisniewski, M.: XPS and NMR studies of phosphoric acid activated carbons. Carbon 46(15), 2113 (2008). https://doi.org/10.1016/j.carbon.2008.09.010
Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1), 67 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012
Zhao, X., Wang, A., Yan, J., Sun, G., Sun, L., Zhang, T.: Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem. Mater. 22(19), 5463 (2010). https://doi.org/10.1021/cm101072z
Hulicova-Jurcakova, D., Seredych, M., Lu, G.Q., Bandosz, T.J.: Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438 (2009). https://doi.org/10.1002/adfm.200801236
Hao, L., Li, X., Zhi, L.: Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899 (2013). https://doi.org/10.1002/adma.201301204
Shen, W., Fan, W.: Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999 (2013). https://doi.org/10.1039/C2TA00028H
Bleda-MartÃnez, M., Maciá-Agulló, J., Lozano-Castelló, D., Morallón, E., Cazorla-Amorós, D., Linares-Solano, A.: Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 43(13), 2677 (2005). https://doi.org/10.1016/j.carbon.2005.05.027
Chen, H.: Biotechnology of Lignocellulose. Chemical Industry Press, Beijing (2014). https://doi.org/10.1007/978-94-007-6896-7
Puziy, A.M., Poddubnaya, O.I., MartÃnez-Alonso, A., Suárez-GarcÃa, F., Tascón, J.M.: Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43(14), 2857 (2005). https://doi.org/10.1016/j.carbon.2005.06.014
Puziy, A., Poddubnaya, O., MartÃnez-Alonso, A., Suárez-GrcÃa, F., Tascón, J.: Synthetic carbons activated with phosphoric acid. Carbon 40(9), 1493 (2002). https://doi.org/10.1016/S0008-6223(01)00317-7
Conway, B.E.: Electrochemical Supercapacitors, 1st edn. Springer, Boston (1999). https://doi.org/10.1007/978-1-4757-3058-6
Béguin, F., Frackowiak, E.: Supercapacitors, 1st edn. Wiley-VCH, Weinheim (2013). https://doi.org/10.1002/9783527646661
Pandolfo, A., Hollenkamp, A.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
Lu, H., Zhao, X.S.: Biomass-derived carbon electrode materials for supercapacitors. Sustain. Energy Fuels 1, 1265 (2017). https://doi.org/10.1039/C7SE00099E
Qu, W.H., Xu, Y.Y., Lu, A.H., Zhang, X.Q., Li, W.C.: Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 189, 285 (2015). https://doi.org/10.1016/j.biortech.2015.04.005
Genovese, M., Jiang, J., Lian, K., Holm, N.: High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J. Mater. Chem. A 3, 2903 (2015). https://doi.org/10.1039/C4TA06110A
Karnan, M., Subramani, K., Srividhya, P., Sathish, M.: Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes. Electrochim. Acta 228, 586 (2017). https://doi.org/10.1016/j.electacta.2017.01.095
Gopiraman, M., Deng, D., Kim, B.S., Chung, I.M., Kim, I.S.: Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors. Appl. Surf. Sci. 409, 52 (2017). https://doi.org/10.1016/j.apsusc.2017.02.209
Yang, S., Zhang, K.: Converting corncob to activated porous carbon for supercapacitor application. Nanomaterials 8(4), 181 (2018). https://doi.org/10.3390/nano8040181
Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S.K., Grace, A.N.: Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 9(1), 16315 (2019). https://doi.org/10.1038/s41598-019-52006-x
Egami, T., Billinge, S.: Underneath the Bragg Peaks, Structural Analysis of Complex Materials. Pergamon Materials Series, Pergamon (2003). https://doi.org/10.1016/S1470-1804(03)80003-2
Billinge, S.J.L., Kanatzidis, M.G.: Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem. Commun. 7, 749–760 (2004). https://doi.org/10.1039/b309577k
Patschke, R., Breshears, J.D., Brazis, P., Kannewurf, C.R., Billinge, S.J., Kanatzidis, M.G.: CuxUTe3: Stabilization of UTe3 in the ZrSe3 structure type via copper insertion. The artifact of Te-Te chains and evidence for distortions due to long range modulations. J. Am. Chem. Soc. 47, 134 (2001). https://doi.org/10.1021/ja0042534
Qiu, X., Thompson, J.W., Billinge, S.J.L.: PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37(4), 678 (2004). https://doi.org/10.1107/S0021889804011744
Zhang, H., Chen, B., Banfield, J.F., Waychunas, G.A.: Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 78(21), 214106 (2008). https://doi.org/10.1103/PhysRevB.78.214106
Proffen, T., Billinge, S.J.L.: PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J. Appl. Crystallogr. 32(3), 572 (1999). https://doi.org/10.1107/S0021889899003532
Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., Davies, C.A.: New approaches to measuring biochar density and porosity. Biomass Bioenergy 66, 176 (2014). https://doi.org/10.1016/j.biombioe.2014.03.059
Moya, X., Muñoz-Rojas, D.: Materials for Sustainable Energy Applications: Conversion, Storage, Transmission, and Consumption. Jenny Stanford Publishing, Taipei (2016). https://doi.org/10.4032/9789814411820
Vaquero, S., Palma, J., Anderson, M., Marcilla, R.: Mass-balancing of electrodes as a strategy to widen the operating voltage window of carbon/carbon supercapacitors in neutral aqueous electrolytes. Int. J. Electrochem. Sci. 8(8), 10293 (2013)
van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396 (2001). https://doi.org/10.1021/jp004368u
Kim, S.Y., van Duin, A.C., Kubicki, J.D.: Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl-, methanol, and formic acid using a reactive force field. J. Mater. Res. 28(3), 513 (2013). https://doi.org/10.1557/jmr.2012.367
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995). https://doi.org/10.1006/jcph.1995.1039
Muñiz, J., Espinosa-Torres, N.D., Guillén-López, A., Longoria, A., Cuentas-Gallegos, A.K., Robles, M.: Geometrical structure data of nanoporous carbon systems obtained from computer simulated pyrolysis. Data Brief 24, 103874 (2019). https://doi.org/10.1016/j.dib.2019.103874
Wang, Q.D., Wang, J.B., Li, J.Q., Tan, N.X., Li, X.Y.: Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combus. Flame 158(2), 217 (2011). https://doi.org/10.1016/j.combustflame.2010.08.010
Han, S.S., Kang, J.K., Lee, H.M., van Duin, A.C.T., Goddard, W.A.: Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles. Appl. Phys. Lett. 86(20), 203108 (2005). https://doi.org/10.1063/1.1929084
van Duin, A.C.T., Strachan, A., Stewman, S., Zhang, Q., Xu, X., Goddard, W.A.: ReaxFF SiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107(19), 3803 (2003). https://doi.org/10.1021/jp0276303
Willems, T.F., Rycroft, C.H., Kazi, M., Meza, J.C., Haranczyk, M.: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149(1), 134 (2012). https://doi.org/10.1016/j.micromeso.2011.08.020
Adler, E.: Lignin chemistry past, present and future. Wood Sci. Technol. 11(3), 169 (1977). https://doi.org/10.1007/BF00365615
MartÃnez, L., Andrade, R., Birgin, E.G., MartÃnez, J.M.: PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157 (2009). https://doi.org/10.1002/jcc.21224
Flores, R.A.C., Garca, F.P., Snchez, E.M.O., Mir, A.M.B., Sandoval, O.A.A.: Physico-chemical characterization of agricultural residues as precursors for activated carbon preparation. Bulgarian J. Agric. Sci. 24, 427 (2018)
Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T.: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20(1), 388 (2006). https://doi.org/10.1021/ef0580117
Ioannidou, O., Zabaniotou, A., Antonakou, E., Papazisi, K., Lappas, A., Athanassiou, C.: Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew. Sustain. Energy Rev. 13(4), 750 (2009). https://doi.org/10.1016/j.rser.2008.01.004
Sing, J., Everett, K.S.W., Haul, D.H., Moscou, R.A.W., Pierotti, L., Rouquerol, R.A., Siemieniewska, T.: Reporting physisorption, pure and applied data for gas/solid systems with special reference to the determination of surface area and porosity. Chemistry 57, 603 (1985)
Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414
Li, X., Hayashi, J., Li, C.: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85(12–13), 1700 (2006). https://doi.org/10.1016/j.fuel.2006.03.008
Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., Silva, S.R.P.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80(1), 440 (1996). https://doi.org/10.1063/1.362745
Wang, Y., Alsmeyer, D.C., McCreery, R.L.: Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2(5), 557 (1990). https://doi.org/10.1021/cm00011a018
Larkin, P.J.: Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, Amsterdam (2017). https://doi.org/10.1016/C2010-0-68479-3
Odeh, A.O.: Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks. J. Fuel Chem. Technol. 43(2), 129 (2015). https://doi.org/10.1016/S1872-5813(15)30001-3
Danish, M., Hashim, R., Ibrahim, M.M., Sulaiman, O.: Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass Bioenergy 61, 167 (2014). https://doi.org/10.1016/j.biombioe.2013.12.008
Zhao, L., Cao, X., Zheng, W., Wang, Q., Yang, F.: Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere 136, 133 (2015). https://doi.org/10.1016/j.chemosphere.2015.04.053
Kim, C.: Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J. Power Sources 142(1–2), 382 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.013
Gabhi, R.S., Kirk, D.W., Jia, C.Q.: Preliminary investigation of electrical conductivity of monolithic biochar. Carbon 116, 435 (2017). https://doi.org/10.1016/j.carbon.2017.01.069
Muiz, J., Espinosa-Torres, N.D., Guilln-Lpez, A., Longoria, A., Cuentas-Gallegos, A.K., Robles, M.: Insights into the design of carbon electrodes coming from lignocellulosic components pyrolysis with potential application in energy storage devices: a combined in silico and experimental study. J. Anal. Appl. Pyrolysis 139, 131 (2019). https://doi.org/10.1016/j.jaap.2019.01.018
Kaiser, K., Scriven, L.M., Schulz, F., Gawel, P., Gross, L., Anderson, H.L.: An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365(6459), 1299 (2019). https://doi.org/10.1126/science.aay1914
Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C.M.B., Stephenson, T., Olsen, B.C., Mitlin, D.: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6(3), 871 (2013). https://doi.org/10.1039/c2ee23599d
Andreas, H.A., Conway, B.E.: Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim. Acta 51(28), 6510 (2006). https://doi.org/10.1016/j.electacta.2006.04.045
Fic, K., Platek, A., Piwek, J., Frackowiak, E.: Sustainable materials for electrochemical capacitors. Mater. Today 21(4), 437 (2018). https://doi.org/10.1016/j.mattod.2018.03.005
Lobato-Peralta, D.R., Pacheco-Cataln, D.E., Altuzar-Coello, P.E., Bguin, F., Ayala-Corts, A., Villafn-Vidales, H.I., Arancibia-Bulnes, C.A., Cuentas-Gallegos, A.K.: Sustainable production of self-activated bio-derived carbons through solar pyrolysis for their use in supercapacitors. J. Anal. Appl. Pyrolysis 150, 104901 (2020). https://doi.org/10.1016/j.jaap.2020.104901
Liu, X., Wang, Y., Zhan, L., Qiao, W., Liang, X., Ling, L.: Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J. Solid State Electrochem. 15(2), 413 (2011). https://doi.org/10.1007/s10008-010-1100-2
Portet, C., Taberna, P., Simon, P., Laberty-Robert, C.: Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49(6), 905 (2004)
Segalini, J., Daffos, B., Taberna, P., Gogotsi, Y., Simon, P.: Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55(25), 7489 (2010). https://doi.org/10.1016/j.electacta.2010.01.003
Acknowledgements
We gratefully acknowledge the financial support to projects PAPIIT (IG100217)—UNAM, and CONACYT (279953). We acknowledge to the technical team of Green to energy (G2E) and its general manager Ing. Daniel Camarena for supplying us the solid residue and photographs of its gasifier. J.M. wants to acknowledge the support given by PAPIIT-(IA102820)-UNAM; Fondo Sectorial de Investigación para la Educación-CONACYT under Project No. A1-S-13294, and the Supercomputing Department of Universidad Nacional Autónoma de México for the computing resources under Project No. LANCAD-UNAM-DGTIC-310 and LANCAD-UNAM-DGTIC-370. We also gratefully acknowledge the technical work of Diego R. Lobato, Patricia Eugenia Altuzar Coello for TGA and XRD, Marcos Fuentes Pérez for the FTIR, Eduardo Fuentes Quezada for physisorption, José MartÃn Baas López through CONACYT project 253986 for elemental analyses (CICY), and Rogelio Morán Elvira for SEM analyses.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
MartÃnez-Casillas, D.C., Mascorro-Gutiérrez, I., Betancourt-Mendiola, M.L. et al. Residue of Corncob Gasification as Electrode of Supercapacitors: An Experimental and Theoretical Study. Waste Biomass Valor 12, 4123–4140 (2021). https://doi.org/10.1007/s12649-020-01248-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-01248-2