Skip to main content

Advertisement

Log in

Biomass Selection Method to Produce Biogas with a Multicriteria Approach

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The first step in the biogas production process consists of analyzing how biomass alternatives are available in the locality and in the surroundings of the region where the biodigester is installed to make a selection that serves as an input for the system or food. Each biomass has different sources of nutrients, energy potential, chemical composition, processing, and ways of management that require decision making, which will be the option selected. This is often a problem for handlers, to safely decide which will be the best option for their reality. As a way to contribute to the solution of this problem, this study aimed to propose a mathematical method able to list the main criteria for selecting biomass, establishing a ranking ranging from the most preferable to the least preferable one. For the application of the multicriteria mathematical model (AHP–TOPSIS), the biomass of cattle (bovine), pigs (swine), sheep (ovine), chicken and horses (equine) were used as alternatives, taking into account the following criteria: (1) logistics cost, (2) potential for waste production from each herd, (3) the volume of biogas, and (4) energy capacity of each biomass. It was found a ranking for the alternatives and the consistency of the method was tested through sensitivity analysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Mejdoub, H., Ksibi, H.: Regulation of biogas production through waste water anaerobic digestion process: modeling and parameters optimization. Waste Biomass Valoriz. 6(1), 29–35 (2014). https://doi.org/10.1007/s12649-014-9324-5

    Article  Google Scholar 

  2. Kasiri, A., Mah, S., Zhang, F., Haveroen, C., Ellsworth, M., Ulrich, S.: Anaerobic processes. Water Environ. Res. 84(4), 398–406 (2012). https://doi.org/10.2175/106143012X13407275694914

    Article  Google Scholar 

  3. Abada, S.B.: La biométhanisation : une solution pour un développement durable. Revue CER’07 Ouj, 31–35 (2007). https://www.cder.dz/spip.php?article1054.

  4. Morgan, H.M., et al.: A techno-economic evaluation of anaerobic biogas producing systems in developing countries. Bioresour. Technol. 250, 910–921 (2018). https://doi.org/10.1016/j.biortech.2017.12.013

    Article  Google Scholar 

  5. Valdez-Vazquez, I., Acevedo-Benítez, J.A., Hernández-Santiago, C.: Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renew. Sustain. Energy Rev. 14(7), 2147–2153 (2010). https://doi.org/10.1016/j.rser.2010.03.034

    Article  Google Scholar 

  6. Appels, L., et al.: Anaerobic digestion in global bio-energy production: potential and research challenges. Renew. Sustain. Energy Rev. 15(9), 4295–4301 (2011). https://doi.org/10.1016/j.rser.2011.07.121

    Article  Google Scholar 

  7. Andersson-Sköld, Y., et al.: Developing and validating a practical decision support tool (DST) for biomass selection on marginal land. J. Environ. Manag. 145, 113–121 (2014). https://doi.org/10.1016/j.jenvman.2014.06.012

    Article  Google Scholar 

  8. Gomes, H.I.: Phytoremediation for bioenergy: challenges and opportunities. Environ. Technol. Rev. 1(1), 59–66 (2012). https://doi.org/10.1080/09593330.2012.696715

    Article  Google Scholar 

  9. Witters, N., et al.: Phytoremediation, a sustainable remediation technology? II: economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenergy 39, 470–477 (2012). https://doi.org/10.1016/j.biombioe.2011.11.017

    Article  Google Scholar 

  10. Rodríguez, R., Gauthier-Maradei, P., Escalante, H.: Fuzzy spatial decision tool to rank suitable sites for allocation of bioenergy plants based on crop residue. Biomass Bioenergy 100, 17–30 (2017). https://doi.org/10.1016/j.biombioe.2017.03.007

    Article  Google Scholar 

  11. Avcioǧlu, A.O., Türker, U.: Status and potential of biogas energy from animal wastes in Turkey. Renew. Sustain. Energy Rev. 16(3), 1557–1561 (2012). https://doi.org/10.1016/j.rser.2011.11.006

    Article  Google Scholar 

  12. Ojolo, S.J., Oke, S.A., Animasahun, K., Adesuyi, B.K.: Utilization of poultry, cow and kitchen wastes for biogas production: a comparative analysis. Iran J. Environ. Health Sci. Eng. 4, 1735–1979 (2007). https://www.bioline.org.br/request?se07034

  13. Mao, C., Feng, Y., Wang, X., Ren, G.: Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45, 540–555 (2015). https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  14. Yentekakis, I.V., Goula, G.: Biogas management: advanced utilization for production of renewable energy and added-value chemicals. 5(February) (2017). https://doi.org/10.3389/fenvs.2017.00007.

  15. Capodaglio, A.G., Callegari, A., Lopez, M.V.: European Framework for the Diffusion of Biogas Uses: emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. (2), 1–18 (2016) https://doi.org/10.3390/su8040298

  16. Taleghani, G., Kia, A.S.: Technical–economical analysis of the Saveh Biogas Power Plant. 30, 441–446 (2005). https://doi.org/10.1016/j.renene.2004.06.004

  17. Ma, J., Scott, N.R., Degloria, S.D., Lembo, A.J.: Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS. 28, 591–600 (2005). https://doi.org/10.1016/j.biombioe.2004.12.003

  18. Mathiesen, V., Pagh, M., Scott, N., Skougaard, P., Scott, N.: CEESA 100% Renewable Energy Transport Scenarios Towards 2050: Technical Background Report Part 2 (2014)

  19. Watson, J.G., Chow, J.C.: Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US r Mexico border. Sci. Total Environ. 276(1–3), 33–47 (2001)

    Article  Google Scholar 

  20. Bhattacharya, S.C., Salam, P.A., Sharma, M.: “Emissions from biomass energy use in some selected Asian countries. Energy 25, 169–188 (2000)

    Article  Google Scholar 

  21. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilization. 51, 521–532 (2015). https://doi.org/10.1016/j.rser.2015.06.029

  22. Ramos-Suárez, J.L., Ritter, A., Mata González, J., Camacho Pérez, A.: Biogas from animal manure: a sustainable energy opportunity in the Canary Islands. Renew. Sustain. Energy Rev. 104, 137–150 (2019). https://doi.org/10.1016/j.rser.2019.01.025

    Article  Google Scholar 

  23. Escalante, H., Castro, L., Rodríguez, R.: Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion 1. Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2016.06.136

    Article  Google Scholar 

  24. Billig, E., Thraen, D.: Renewable methane: a technology evaluation by multi-criteria decision making from a European perspective. Energy (2017). https://doi.org/10.1016/j.energy.2017.07.164

    Article  Google Scholar 

  25. Dinca, C., Badea, A., Rousseaux, P., Apostol, T.: A multi-criteria approach to evaluate the natural gas energy systems. 35(x), 5754–5765 (2007). https://doi.org/10.1016/j.enpol.2007.06.024

  26. Perona, P., et al.: Biomass selection by floods and related timescales: Part 1. Experimental observations. Adv. Water Resour. 39, 85–96 (2012). https://doi.org/10.1016/j.advwatres.2011.09.016

    Article  Google Scholar 

  27. Garcia, S.G., Montequin, V.R., Fernandez, R.L., Ortega-Fernandez, L.: Evaluation of the synergies in cogeneration with steel waste gases based on Life Cycle Assessment: a combined coke oven and steelmaking gas case study. J. Clean. Prod. 217, 576–583 (2019). https://doi.org/10.1016/j.jclepro.2019.01.262

    Article  Google Scholar 

  28. Fernandez-Lopez, M., Pedroche, J., Valverde, J.L., Sanchez-Silva, L.: Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®. Energy Convers. Manag. 140, 211–217 (2017). https://doi.org/10.1016/j.enconman.2017.03.008

    Article  Google Scholar 

  29. Li, H., Chen, Q., Zhang, X., Finney, K.N., Sharifi, V.N., Swithenbank, J.: Evaluation of a biomass drying process using waste heat from process industries: a case study. Appl. Therm. Eng. 35(1), 71–80 (2012). https://doi.org/10.1016/j.applthermaleng.2011.10.009

    Article  Google Scholar 

  30. De Meyer, A., Cattrysse, D., Rasinmäki, J., Van Orshoven, J.: Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review. Renew. Sustain. Energy Rev. 31, 657–670 (2014). https://doi.org/10.1016/j.rser.2013.12.036

    Article  Google Scholar 

  31. Harsono, S.S., Grundmann, P., Soebronto, S.: Anaerobic treatment of palm oil mill effluents: potential contribution to net energy yield and reduction of greenhouse gas emissions from biodiesel production. J. Clean. Prod. 64, 619–627 (2014). https://doi.org/10.1016/j.jclepro.2013.07.056

    Article  Google Scholar 

  32. Liou, J.J.H., Tzeng, G.H.: Comments on ‘Multiple criteria decision making (MCDM) methods in economics: An overview’. Technol. Econ. Dev. Econ. 18(4), 672–695 (2012). https://doi.org/10.3846/20294913.2012.753489

    Article  Google Scholar 

  33. Zavadskas, E.K., Turskis, Z., Kildiene, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20(1), 165–179 (2014). https://doi.org/10.3846/20294913.2014.892037

    Article  Google Scholar 

  34. Triantaphyllou, E.: MCDM Methods: A Comparative Study (2000). https://www.springer.com/gp/book/9780792366072.

  35. Ongkunaruk, P., Piyakarn, C.: Logistics cost structure for mangosteen farmers in Thailand. Syst. Eng. Procedia 2, 40–48 (2011). https://doi.org/10.1016/j.sepro.2011.10.006

    Article  Google Scholar 

  36. Scarlat, N., Fahl, F., Dallemand, J.F., Monforti, F., Motola, V.: A spatial analysis of biogas potential from manure in Europe. Renew. Sustain. Energy Rev. 94(June), 915–930 (2018). https://doi.org/10.1016/j.rser.2018.06.035

    Article  Google Scholar 

  37. Batzias, F.A., Sidiras, D.K., Spyrou, E.K.: Evaluating livestock manures for biogas production: a GIS based method. Renew. Energy 30(8), 1161–1176 (2005). https://doi.org/10.1016/j.renene.2004.10.001

    Article  Google Scholar 

  38. Mulliner, E., Malys, N., Maliene, V.: Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega (UK) 59, 146–156 (2016). https://doi.org/10.1016/j.omega.2015.05.013

    Article  Google Scholar 

  39. Saaty, R.W.: The analytic hierarchy process—what it is and how it is used. Math. Model. 9(3–5), 161–176 (1987). https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  40. Hwang, C.L., Masud, A.S.M.: Multiple objective decision making—methods and applications. Lect. Notes Econ. Math. Syst. 1(164), 1–358 (1979). https://doi.org/10.1007/978-3-642-45511-7

    Article  Google Scholar 

  41. Diaby, V., Goeree, R.: How to use multi-criteria decision analysis methods for reimbursement decision-making in healthcare: a step-by-step guide. Expert Rev. Pharmacoecon. Outcomes Res. 14(1), 81–99 (2014). https://doi.org/10.1586/14737167.2014.859525

    Article  Google Scholar 

  42. Senthil, S., Srirangacharyulu, B., Ramesh, A.: A robust hybrid multi-criteria decision making methodology for contractor evaluation and selection in third-party reverse logistics. Expert Syst. Appl. 41(1), 50–58 (2014). https://doi.org/10.1016/j.eswa.2013.07.010

    Article  Google Scholar 

  43. Velozo, F., Cavicchioli, F., Rodrigues, T., Junior, A.B.: Multicriterial model for selecting a charcoal kiln (2019). https://doi.org/10.1016/j.energy.2019.116377

Download references

Acknowledgements

The authors thank CAPES (Coordination of Superior Level Staff Improvement) for financial support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Seabra Júnior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seabra Júnior, E., Colmenero, J. & Braghini Junior, A. Biomass Selection Method to Produce Biogas with a Multicriteria Approach. Waste Biomass Valor 12, 3169–3177 (2021). https://doi.org/10.1007/s12649-020-01231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01231-x

Keywords

Navigation