Skip to main content

Advertisement

Log in

Pre-drying of 2-Phase Olive Pomace by Drum Dryer to Improve Processability

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Abstract

In this study, the minimum quality loss of 2-phase olive pomace and the maximum system’s energy efficiency is targeted during pre-drying of olive pomace in a drum dryer. Vapor pressure and valse rotational speed were selected as the independent variables of drum dryer. For each vapor pressure value (1, 2, 3, 3.5 and 4 bar), drying of 2-phase olive pomace was performed at different valse rotational speeds (0.5, 1, 2, 3, 4.5 and 6 rpm). Drum dryer conditions were optimized with desirability function approach by targeting the moisture content range as 30–50%, minimum peroxide value and maximum specific moisture extraction rate (SMER). The optimum drum dryer conditions were determined as 3.27 bar for vapor pressure and 6 rpm for valse rotational speed. Moreover, the effects of vapor pressure and valse rotational speed on the physical and chemical properties of pre-dried 2-phase olive pomace and the system’s energy efficiency were examined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Imbert, E.: Food waste valorization options: opportunities from the bioeconomy. Open Agric. 2, 195–204 (2017)

    Google Scholar 

  2. Lin, C.S.K., Koutinas, A.A., Stamatelatou, K., Mubofu, E.B., Matharu, A.S., Kopsahelis, N., Pfaltzgraff, L.A., Clark, J.H., Papanikolaou, S., Kwan, T.H.: Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels Bioprod. Bioref. 8, 686–715 (2014)

    Article  Google Scholar 

  3. Koutinas, A.A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Garcia, I.L., Kookos, I.K., Papanikolaou, S., Kwan, T.H., Lin, C.S.K.: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem. Soc. Rev. 43, 2587–2627 (2014)

    Article  Google Scholar 

  4. Abdel-Shafy, H.I., Mansour, M.S.: Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt. J. Petrol. 27, 1275–1290 (2018)

    Article  Google Scholar 

  5. Sepúlveda, F.J., Arranz, J.I., Miranda, M.T., Montero, I., Rojas, C.V.: Drying and pelletizing analysis of waste from cork granulated industry. Energies 11, 109 (2018)

    Article  Google Scholar 

  6. Azbar, N., Vardar, N., Akın, M., Cevilan, I.: Zeytinyağı Üretiminde Çevre Sorunları ve Çözümleri Uluslararası Çalıştayı. Presented at the Balıkesir (2002)

  7. Roig, A., Cayuela, M.L., Sánchez-Monedero, M.A.: An overview on olive mill wastes and their valorisation methods. Waste Manage. 26, 960–969 (2006)

    Article  Google Scholar 

  8. Oktav, E., Özer, A.: Zeytinyağı endüstrisi atıksularının özellikleri ve arıtım alternatifleri, 1. Zeytinyağı Üretiminde Çevre Sorunları ve Çözümleri Çalıştayı, Zeytinli/Edremit-Balıkesir, Bildiriler Kitabı. 51–65 (2002)

  9. Nergiz, C.: Zeytinyağı teknolojisi oluşturan sistemleri fenolik bileşikler yönünden karşılaştırılması, Türkiye 1. Zeytincilik Sempozyumu. 227–235 (2000)

  10. Liebanes, M.D., Aragon, J.M., Palancar, M.C., Arevalo, G., Jimenez, D.: Fluidized bed drying of 2-phase olive oil mill by-products. Dry. Technol. 24, 1609–1618 (2006)

    Article  Google Scholar 

  11. Fadil, K., Chahlaoui, A., Ouahbi, A., Zaid, A., Borja, R.: Aerobic biodegradation and detoxification of wastewaters from the olive oil industry. Int. Biodeterior. Biodegrad. 51, 37–41 (2003)

    Article  Google Scholar 

  12. Tziotzios, G., Michailakis, S., Vayenas, D.V.: Aerobic biological treatment of olive mill wastewater by olive pulp bacteria. Int. Biodeterior. Biodegrad. 60, 209–214 (2007)

    Article  Google Scholar 

  13. Ergüder, T.H., Güven, E., Demirer, G.N.: Anaerobic treatment of olive mill wastes in batch reactors. Process Biochem. 36, 243–248 (2000)

    Article  Google Scholar 

  14. Kotsou, M., Kyriacou, A., Lasaridi, K., Pilidis, G.: Integrated aerobic biological treatment and chemical oxidation with Fenton’s reagent for the processing of green table olive wastewater. Process Biochem. 39, 1653–1660 (2004)

    Article  Google Scholar 

  15. De Rosa, S., Giordano, G., Granato, T., Katovic, A., Siciliano, A., Tripicchio, F.: Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst. J. Agric. Food Chem. 53, 8306–8309 (2005)

    Article  Google Scholar 

  16. Sarika, R., Kalogerakis, N., Mantzavinos, D.: Treatment of olive mill effluents: part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 31, 297–304 (2005)

    Article  Google Scholar 

  17. Ginos, A., Manios, T., Mantzavinos, D.: Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity. Journal of Hazardous Materials. 133, 135–142 (2006)

    Article  Google Scholar 

  18. Ginos, A., Manios, T., Mantzavinos, D.: Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity. J. Hazard. Mater. 133, 135–142 (2006)

    Article  Google Scholar 

  19. Paredes, C., Bernal, M.P., Roig, A., Cegarra, J.: Effects of olive mill wastewater addition in composting of agroindustrial and urban wastes. Biodegradation 12, 225–234 (2001)

    Article  Google Scholar 

  20. Alkhamis, T.M., Kablan, M.M.: A process for producing carbonaceous matter from tar sand, oil shale and olive cake. Energy 24, 873–881 (1999)

    Article  Google Scholar 

  21. Minkova, V., Razvigorova, M., Bjornbom, E., Zanzi, R., Budinova, T., Petrov, N.: Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass. Fuel Process. Technol. 70, 53–61 (2001)

    Article  Google Scholar 

  22. Hernández, V., Romero-García, J.M., Dávila, J.A., Castro, E., Cardona, C.A.: Techno-economic and environmental assessment of an olive stone based biorefinery. Resour. Conserv. Recycl. 92, 145–150 (2014)

    Article  Google Scholar 

  23. Ranalli, A., Martinelli, N.: Integral centrifuges for olive oil extraction, at the third millenium threshold. Transformation yields. Grasas y aceites 46, 255–263 (1995)

    Article  Google Scholar 

  24. Torrecilla, J.S., Aragón, J.M., Palancar, M.C.: Modeling the drying of a high-moisture solid with an artificial neural network. Ind. Eng. Chem. Res.. 44, 8057–8066 (2005)

    Article  Google Scholar 

  25. Arjona, R., Ollero, P., et al.: Automation of an olive waste industrial rotary dryer. J. Food Eng. 68, 239–247 (2005)

    Article  Google Scholar 

  26. Baysan, U., Koç, M., Ertekin, F.: The importance of drying for valorization of 2-phase olive pomace. Turk. J. Agric. Food Sci. Technol. 5, 103–112 (2017)

    Google Scholar 

  27. Milczarek, R.R., Dai, A.A., Otoni, C.G., McHugh, T.H.: Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste. J. Food Eng. 103, 434–441 (2011)

    Article  Google Scholar 

  28. Brennan, J.G., Champhell-Platt, G.: Food Dehydration: Dictionary and Guide. (1994)

  29. Association of Official Analytical Chemists (AOAC): Official Methods of Analysis. Official Method, Arlington (1980)

  30. Association of Official Analytical Chemists (AOAC): Official Methods for Analysis. Official Method, Arlington (1990)

  31. Sun-Waterhouse, D., Zhou, J., Miskelly, G.M., Wibisono, R., Wadhwa, S.S.: Stability of encapsulated olive oil in the presence of caffeic acid. Food Chem. 126, 1049–1056 (2011)

    Article  Google Scholar 

  32. Göğüş, F., Özkaya, M.T., Ötleş, S.: Zeytinyağı. Eflatun Yayınevi, Genel Yayın Numarası. 6, (2009)

  33. Hawlader, M.N.A., Jahangeer, K.A.: Solar heat pump drying and water heating in the tropics. Sol. Energy 80, 492–499 (2006)

    Article  Google Scholar 

  34. Gürlek, G., Akdemir, Ö, Güngör, A.: Gıda Kurutulmasında Isı Pompalı Kurutucuların Kullanımı ve Elma Kurutmada Uygulanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 21, 398–403 (2015)

    Google Scholar 

  35. Sadi, T., Meziane, S., et al.: Mathematical modelling, moisture diffusion and specific energy consumption of thin layer microwave drying of olive pomace. Int. Food Res. J. 22, 494–501 (2015)

    Google Scholar 

  36. Montero, I., Blanco, J., Miranda, T., Rojas, S., Celma, A.R.: Design, construction and performance testing of a solar dryer for agroindustrial by-products. Energy Convers. Manage. 51, 1510–1521 (2010)

    Article  Google Scholar 

  37. Montero, I., Miranda, M.T., Sepúlveda, F.J., Arranz, J.I., Rojas, C.V., Nogales, S.: Solar dryer application for olive oil mill wastes. Energies 8, 14049–14063 (2015)

    Article  Google Scholar 

  38. Çoban, ÖE., Patır, B.: Antioksidan etkili bazı bitki ve baharatların gıdalarda kullanımı. Gıda Teknolojileri Elektronik Dergisi. 5, 7–19 (2010)

    Google Scholar 

  39. Zungur, A., Koç, M., Yalçın, B., Kaymak-Ertekin, F., Ötleş, S.: Storage stability of microencapsulated extra virgin olive oil powder. In: 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being.” p. 257 (2014)

  40. Kıvrak, M., Yorulmaz, A., Erinç, H.: Ak Delice Yabani Zeytini (Olea Europal L Subsp Oleaster) ve Zeytinyağının Karakterizasyonu. GIDA/J. Food 41, 367–372 (2016)

    Google Scholar 

  41. Demirok, E., Damar, Ġ, Hastaoğlu, E., Ekim, M., Turhan, Ö, Denge, A., Muhacir, N., Açıkgöz, E.: Avrupa ülkelerinde ticari sofralık zeytin ile zeytin yağı üretim teknikleri konusunda eğitim-2–sofralık zeytin ve zeytin yağı kalitesi. 1. Ulusal Zeytin Öğrenci Kongresi, Balıkesir (2008)

    Google Scholar 

  42. Gómez-Alonso, S., Mancebo-Campos, V., Desamparados Salvador, M., Fregapane, G.: Oxidation kinetics in olive oil triacylglycerols under accelerated shelf-life testing (25–75 °C). Eur. J. Lipid Sci. Technol. 106, 369–375 (2004)

    Article  Google Scholar 

  43. Eroğlu, E., Yıldız, H.: Gıdaların ozmotik kurutulmasında uygulanan yeni tekniklerin enerji verimliliği bakımından değerlendirilmesi. Gıda Teknolojileri Elektronik Dergisi. 6, 41–48 (2011)

    Google Scholar 

  44. Baker, C.G.: Industrial Drying of Foods. Springer, London (1997)

    Book  Google Scholar 

  45. Baysan, U., Koç, M., Güngör, A., Kaymak-Ertekin, F.: Effect of tray dryer’s independent variables (drying temperature and air velocity) on the quality of olive pomace and system’s energy efficiency. In: IDS 2018. 21st International Drying Symposium Proceedings. pp. 1005–1012. Editorial Universitat Politècnica de València (2018)

  46. Chua, K.J., Chou, S.K., Ho, J.C., Hawlader, M.N.A.: Heat pump drying: recent developments and future trends. Dry. Technol. 20, 1579–1610 (2002)

    Article  Google Scholar 

  47. Phahom, T., Phoungchandang, S., Kerr, W.L.: Effects of steam-microwave blanching and different drying processes on drying characteristics and quality attributes of Thunbergia laurifolia Linn. leaves. J. Sci. Food Agric. (2017). https://doi.org/10.1002/jsfa.8167

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ege University, Council of Scientific Research Projects (Project Number: 16-MUH-024) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Koç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baysan, U., Koç, M., Güngör, A. et al. Pre-drying of 2-Phase Olive Pomace by Drum Dryer to Improve Processability. Waste Biomass Valor 12, 2495–2506 (2021). https://doi.org/10.1007/s12649-020-01202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01202-2

Keywords

Navigation