Skip to main content
Log in

A Sustainable Carbon Material from Kraft Black Liquor as Nickel-Based Electrocatalyst Support for Ethanol Electro-Oxidation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present work deals with a new methodology to produce a sustainable carbon material through a simple synthetic route, and its performance as Ni-based electrocatalyst support. Such porous carbon was easily synthesized from the raw Kraft black liquor, a by-product rich in lignin, by chemical polymerization in alkaline medium with a nickel source and subsequent activation by CO2. Nickel nanoparticles were homogeneously distributed in the samples, as revealed by STEM images. XPS analyses and BET method indicated the presence of Ni species in the synthesized material and a micro-mesoporous structure, respectively. The electrochemical characterization in NaOH and NaOH+ ethanol solutions showed that the as-prepared material has the relevant potential to be applied as electrocatalyst for Ethanol Oxidation Reaction (EOR) in alkaline medium.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustainable Energy Rev. 21, 506–523 (2013)

    Google Scholar 

  2. Mesfun, S., Lundgren, J., Grip, C.E., Toffolo, A., Nilsson, R.L.K., Rova, U.: Black liquor fractionation for biofuels production – A techno-economic assessment. Bioresour. Technol. 166, 508–517 (2014)

    Google Scholar 

  3. Gouveia, S.L., Fernández-Costas, C., Sanromán, M.A., Moldes, D.: Polymerization of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: Effect of operational conditions and black liquor origin. Bioresour. Technol. 131, 288–294 (2013)

    Google Scholar 

  4. Laurichesse, S., Avérous, L.: Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39, 1266–1290 (2014)

    Google Scholar 

  5. Diehl, B.G., Brown, N.R., Frantz, C.W., Lumadue, M.R., Cannon, F.: Effects of pyrolysis temperature on the chemical composition of refined softwood and hardwood lignins. Carbon 60, 531–537 (2013)

    Google Scholar 

  6. Xu, G., Yan, G., Yang, J.: An integrated green process for beneficial utilization of pulping black liquor. Waste Biomass Valor. 4, 497–502 (2013). https://doi.org/10.1007/s12649-012-9177-8

    Article  Google Scholar 

  7. Delgado, N., Ysambertt, F., Chávez, G., et al.: Valorization of kraft lignin of different molecular weights as surfactant agent for the oil industry. Waste Biomass Valorization 10, 3383–3395 (2019). https://doi.org/10.1007/s12649-018-0352-4

    Article  Google Scholar 

  8. Domínguez-Robles, J., Palenzuela, M.V., Sánchez, R., et al.: Coagulation–flocculation as an alternative way to reduce the toxicity of the black liquor from the paper industry: thermal valorization of the solid biomass recovered. Waste Biomass Valorization (2019). https://doi.org/10.1007/s12649-019-00795-7

    Article  Google Scholar 

  9. Mänttäri, M., Lahti, J., Hatakka, H., Louhi-Kultanen, M., Kallioinen, M.: Separation phenomena in UF and NF in the recovery of organic acids from kraft black liquor. J. Membr. Sci. 49, 84–91 (2015)

    Google Scholar 

  10. Pizzi, A.: Types, processing and properties of bioadhesives for wood and fibers. In: Waldron, Keith, Whitworth, Sarah (eds.) Advances in biorefineries: Biomass and waste supply chain exploitation, pp. 736–770. Woodhead Publishing Ltd, Cambridge (2014)

    Google Scholar 

  11. Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S.: The influencing of pulping conditions on the structure of acetosolv eucalyptus lignins. J. Wood Chem. Technol. 17, 147–162 (1997)

    Google Scholar 

  12. Amaral-Labat, G.A., Gonçalves, A.R.: Oxidation in acidic medium of lignins from agricultural residues. Appl. Biochem. Biotechnol. 148, 151–161 (2008)

    Google Scholar 

  13. Bertaud, F., Tapin-Lingua, S., Pizzi, A., Navarrete, P., Petit-Conil, M.: Development of green adhesives for fibreboard manufacturing, using tannins and lignin from pulp mill residues. Cell Chem. Technol. 46, 449–455 (2012)

    Google Scholar 

  14. Job, N., Pirard, R., Marien, J., Pirard, J.P.: Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42, 619–628 (2004)

    Google Scholar 

  15. Marsh, J.T.: Cellulose and formaldehyde. J. Soc. Dyers Colour 75, 244–252 (1959)

    Google Scholar 

  16. Park, H., Park, K., Shalaby, W.S.W.: Biodegradable Hydrogels for Drug Delivery. CRC Press, Technomic, Boca Raton (1993)

    Google Scholar 

  17. Mirasol, J.R., Cordero, T., Rodriguez, J.J.: Preparation and characterization of activated caibons from eucalyptus krafi-lignin. Carbon 31, 87–95 (1993)

    Google Scholar 

  18. Dillon, R., Srinivasan, S., Aricò, A.S., Antonucci, V.: International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127, 112–126 (2004)

    Google Scholar 

  19. Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B 88, 1–24 (2009)

    Google Scholar 

  20. Godoi, D.R.M., Villullas, H.M., Zhu, F.-C., Jiang, Y.-X., Sun, S.-G., Guo, J., Sun, L., Chen, R.: A comparative investigation of metal-suporte interactions on the catalytic activity of Pt nanoparticles for ethanol oxidations in alkaline medium. J. Power Sources 311, 81–90 (2016)

    Google Scholar 

  21. Muench, F., Oezaslan, M., Rauber, M., Kaserer, S., Fuchs, A., Mankel, E., Brötz, J., Strasser, P., Roth, C., Ensinger, W.: Electroless synthesis of nanostructured nickel and nickelboron tubes and their performance as unsupported ethanol electrooxidation catalysts. J. Power Sources 222, 243–252 (2013)

    Google Scholar 

  22. Sun, S., Jusys, Z., Behm, R.J.: Electrooxidation of ethanol on Pt-based and Pd-based catalysts in alkaline electrolyte under fuel cell relevant reaction and transport conditions. J. Power Sources 231, 122–133 (2013)

    Google Scholar 

  23. Geraldes, A.N., da Silva, D.F., Pino, E.S., da Silva, J.C.M., de Souza, R.F.B., Hammer, P., Spinacé, E.V., Neto, A.O., Linardi, M., dos Santos, M.C.: Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim. Acta 111, 455–465 (2013)

    Google Scholar 

  24. Modibedi, R.M., Masombuka, T., Mathe, M.K.: Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 36, 4664–4672 (2011)

    Google Scholar 

  25. Antolini, E., Gonzalez, E.R.: Alkaline direct alcohol fuel cells. J. Power Sources 195, 3431–3450 (2010)

    Google Scholar 

  26. Saldan, I., Semenyuk, Y., Marchuk, I., Reshetnyak, O.: Chemical synthesis and application of palladium nanoparticles. J. Mater. Sci. 50, 2337–2354 (2015)

    Google Scholar 

  27. Korzec, M., Bartczak, P., Niemczyk, A., Szade, J., Kapkowski, M., Zenderowska, P., Balin, K., Lelatko, J., Polanski, J.: Performance characteristics of air-breathing anion-exchange membrane direct ethanol fuel cells. J. Catal. 313, 1–8 (2014)

    Google Scholar 

  28. Ozturk, Z., Sen, F., Sen, S., Gokagac, G.: The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012)

    Google Scholar 

  29. Hibbitts, D.D., Neurock, M.: Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts. J. Catal. 299, 261–271 (2013)

    Google Scholar 

  30. Zalineeva, A., Serov, A., Serov, M.X., Martinez, U., Artyushkova, K., Baranton, S., Coutanceau, C., Atanassov, P.: Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium. Electrochem. Commun. 57, 48–51 (2015)

    Google Scholar 

  31. Liu, F., Zhang, X.B., Haussler, D., Jager, W., Yi, G.F., Cheng, J.P., Tao, X.Y., Luo, Z.Q., Zhou, S.M.: TEM characterization of metal and metal oxide particles supported by multi-wall carbon nanotubes. J. Mater. Sci. 41, 4523–4531 (2006)

    Google Scholar 

  32. Liu, J., Zhou, H., Wang, Q., Zeng, F., Kuang, Y.: Reduced graphene oxide supported palladium–silver bimetallic nanoparticles for ethanol electro-oxidation in alkaline media. J. Mater. Sci. 47, 2188–2194 (2012)

    Google Scholar 

  33. Jou, L.-S., Chang, J.-K., Twhang, T.-J., Sun, I.-W.: Electrodeposition of Palladium–Copper Films from 1-Ethyl-3-methylimidazolium Chloride–Tetrafluoroborate Ionic Liquid on Indium Tin Oxide Electrodes. J. Electrochem. Soc. 156, D193–D197 (2009)

    Google Scholar 

  34. Cuña, A., Plascencia, C.R., Leal da Silva, E., Marcuzzo, J., Khan, S., Tancredi, N., Baldan, M.R., Malfatti, C.F.: Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl. Catal. B 202, 95–103 (2017)

    Google Scholar 

  35. Jongsomjit, S., Prapainainar, P., Sombatmankhong, K.: Synthesis and characterisation of Pd–Ni–Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ion. 288, 147–153 (2016)

    Google Scholar 

  36. Parreira, L.S., da Silva, J.C.M., D’Villa-Silva, M., Simões, F.C., Garcia, S., Gaubeur, I., Cordeiro, M.A.L., Leite, E.R., dos Santos, M.C.: PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study. Electrochim. Acta 96, 243–252 (2013)

    Google Scholar 

  37. Ciszewski, A., Sron, K., Stepniak, I., Milczarek, G., Nickel: (II) lignosulfonate as precursor for the deposition of nickel hydroxide nanoparticles on a glassy carbon electrode for oxidative electrocatalysis. Electrochim. Acta 134, 355–362 (2014)

    Google Scholar 

  38. Vaithilingam, S., Ramanujam, T.M.: Development of rice straw black liquor based porous carbon-poly(aniline-co-methoxy aniline) as supporting for electrochemical performances of alcohol oxidations. Ionics. 24, 3923–3935 (2018)

    Google Scholar 

  39. Zhao, X., Muench, F., Schaefer, S., Brötz, J., Duerrschnabel, M., Molina-Luna, L., Kleebe, H.-J., Liu, S., Tan, J., Ensinger, W.: Electroless decoration of macroscale foam with nickel nano-spikes: a scalable route toward efficient catalyst electrodes. Electrochem. commun 65, 39–43 (2016)

    Google Scholar 

  40. ASTM E1755–01(2015) - Standard Test Method for Ash in Biomass

  41. Brunauer, S., Emmet, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Google Scholar 

  42. Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 27, 457–467 (1989)

    Google Scholar 

  43. Gregg, S.J., Sing, K.S.W.: Adsorption: Surface Area and Porosity. Academic Press, London (1982)

    Google Scholar 

  44. Tarazona, P.: Solid-fluid transition and interfaces with density functional approaches. Surf. Sci. 331–333, 989–994 (1995)

    Google Scholar 

  45. Leal da Silva, E., Cuña, A., Khan, S., et al.: Biomass Derived Carbon as Electrocatalyst Support for Ethanol Oxidation Reaction in Alkaline Medium: Electrochemical and Spectroelectrochemical Characterization. Waste Biomass Valor (2018). https://doi.org/10.1007/s12649-018-0510-8

  46. Gea, G., Murillo, M.B., Arauzo, J.: Thermal Degradation of Alkaline Black Liquor from Straw. Thermogravimetric Study. Ind. Eng. Chem. Res. 41, 4714–4721 (2002)

    Google Scholar 

  47. Sebio-Puñal, T., Naya, S., López-Beceiro, J., Tarrío-Saavedra, J., Artiaga, R.: Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 109, 1163–1167 (2012)

    Google Scholar 

  48. Tejado, A., Peña, C., Labidi, J., Echeverria, J.M., Mondragon, I.: Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 98, 1655–1663 (2007)

    Google Scholar 

  49. Alén, R., Rytkönen, S., McKeough, P.: Thermogravimetric behavior of black liquors and their organic constituents. J. Anal. Appl. Pyrol. 31, 1–13 (1995)

    Google Scholar 

  50. Pizzi, A.: Advanced Wood Adhesives Technology. Marcel Dekker Inc., New York (1994)

    Google Scholar 

  51. Seo, J., Park, H., Shin, K., Baeck, S.H., Rhym, Y., Shim, S.E.: Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template. Carbon. 76, 357–367 (2014)

    Google Scholar 

  52. Arico, E., Tabuti, F., Fonseca, F.C., de Florio, D.Z., Ferlauto, A.S.: Carbothermal reduction of the YSZ–NiO solid oxide fuel cell anode precursor by carbon-based materials. J. Therm. Anal. Calorim. 97, 157–161 (2009)

    Google Scholar 

  53. Lourençon, T.V., Hansel, F.A., da Silva, T.A., Ramos, L.P., de Muniz, G.I.B., Magalhães, W.L.E.: Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 154, 82–88 (2015)

    Google Scholar 

  54. Ibrahim, M.N.M., Zakaria, N., Sipaut, C.S., Sulaiman, O., Hashim, R.: Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 86, 112–119 (2011)

    Google Scholar 

  55. Celzard, A., Fierro, V., Amaral-Labat, G.: Adsorption by carbon gels Adsorption by Carbons ed J M D Tascon, pp. 205–244. Elsevier, Amsterdam (2012)

    Google Scholar 

  56. Marsh, H., Rodríguez-Reinoso, R.F.: Activated Carbons. Elsevier, Oxford (2006)

    Google Scholar 

  57. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemienewska, T.: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Google Scholar 

  58. Cuña, A., Tancredi, N., Bussi, J., Deiana, C., Sardella, M.F., Barranco, V., Rojo, J.M.: E. grandis as a biocarbons precursor for supercapacitor electrode application. Waste Biomass Valorization 5, 305–313 (2014)

    Google Scholar 

  59. Leal da Silva, E., Ortega Vega, M.R., Correa, P.S., Cuña, A., Tancredi, N., Malfatti, C.F.: Influence of activated carbon porous texture on catalyst activity for ethanol electro-oxidation. Int. J. Hydrogen Energ. 39, 14760–14767 (2014)

    Google Scholar 

  60. Pantea, D., Darmstadt, H., Kaliaguine, S., Roy, C.: Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Appl. Surf. Sci. 217, 181–193 (2003)

    Google Scholar 

  61. Goula, M.A., Charisiou, N.D., Papageridis, K.N., Delimitis, A., Pachatouridou, E., Iliopoulou, E.F.: Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method. Int. J. Hydrogen Energy 40, 9183–9200 (2015)

    Google Scholar 

  62. Xu, C., Hu, Y., Rong, J., Jiang, S.P., Liu, Y.: Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem. Comm. 9, 2009–2012 (2007)

    Google Scholar 

  63. Wicklein, B., Arranz, J., Mayoral, A., Aranda, P., Huttel, Y., Ruiz-Hitzky, E.: Nanostructured carbon–metal hybrid aerogels from bacterial cellulose. RSC Adv. 7, 42203–42210 (2017)

    Google Scholar 

  64. Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., Yi, B.: High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56, 146–154 (2013)

    Google Scholar 

  65. Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F.: Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995–2001 (2000)

    Google Scholar 

  66. Biniak, S., Szymanski, G., Siedlewski, J., Swiatkowski, A.: The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997)

    Google Scholar 

  67. Bandosz, T.J., Ania, C.O.: Surface chemistry of activated carbons and its characterization. In: Bandosz, T.J. (ed.) Activated Carbon Surfaces in Environmental Remediation, pp. 159–229. Elsevier, New York (2006)

    Google Scholar 

  68. Xing, W., Qiao, S., Wu, X., Gao, X., Zhou, J., Zhuo, S., Hartono, S.B., Hulicova-Jurcakova, D.: Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196, 4123–4127 (2011)

    Google Scholar 

  69. Dutta, A., Adhikary, R., Broekmann, P., Datta, J.: Intelligent catalytic support by Ni/NiO/Ni(OH)2 in low level of Pd/Pt boosting the performance of alkaline DEFC. Appl. Catal. B-Environ. 257, 117847 (2019)

    Google Scholar 

  70. Ureta-Zañartu, M.S., Berríos, C., Pavez, J., Zagal, J., Gutiérrez, C., Marco, J.F.: Electrooxidation of 2-chlorophenol on polyNiTSPc-modified glassy carbon electrodes. J. Electroanal. Chem. 553, 147–156 (2003)

    Google Scholar 

  71. Castro, C., Millan, A., Palacio, F.: Nickel oxide magnetic nanocomposites in an imine polymer matrix. J. Mater. Chem. 10, 1945–1947 (2000)

    Google Scholar 

  72. Zhang, X., Shi, W., Zhu, J., Zhao, W., Ma, J., Mhaisalkar, S., Maria, T.L., Yang, Y., Zhang, H., Hng, H.H., Yan, Q.: Synthesis of Porous NiO Nanocrystals with Controllable Surface Area and Their Application as Supercapacitor Electrodes. Nano Res. 3, 643–652 (2010)

    Google Scholar 

  73. Song, P., Wen, D., Guo, Z.X., Korakianitis, T.: Oxidation investigation of nickel nanoparticles. Phys. Chem. Chem. Phys. 10, 5057–5065 (2008)

    Google Scholar 

  74. Compton, R.G., Banks, C.E.: Understanding Voltammetry. Imperial College Press, London (2011)

    Google Scholar 

  75. Fleischmann, M., Korinek, K., Pletcher, D.: The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 31, 39–49 (1971)

    Google Scholar 

  76. Zhan, J., Cai, M., Zhang, C., Wang, C.: Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochim. Acta 154, 70–76 (2015)

    Google Scholar 

  77. Sheikh, A.M., Correa, P.S., LealdaSilva, E., Savaris, I.D., Amico, S.C., Malfatti, C.F.: Energy conversion using Pd-based catalysts in direct ethanol fuel cell. Renew. Energy Power Qual. J. 1(11), 342–345 (2013)

    Google Scholar 

  78. Shen, S.Y., Zhao, T.S., Xu, J.B., Li, Y.S.: Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195, 1001–1006 (2010)

    Google Scholar 

  79. Gupta, U.K., Pramanik, H.: Electrooxidation study of pure ethanol/methanol and their mixture for the application in direct alcohol alkaline fuel cells (DAAFCs). Int. J. Hydrogen Energia 44, 421–435 (2019)

    Google Scholar 

  80. Carlson, G., Lewis, D., McKinley, K., Richardson, J. Tillotson T.: Aerogel commercialization:technology, markets and costs. J. Non-Cryst Solids 186, 372–379 (1995).

Download references

Acknowledgements

The authors are especially grateful to PhD. Mariela Pistón- Analytical Chemistry, Grupo de Análisis de Elementos Traza y Desarrollo de Estrategias Simples para Preparación de Muestras (GATPREM), Facultad de Química, Universidad de la República, Montevideo, Uruguay for the determination of Ni.

Funding

This study was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). E. Leal da Silva thanks the Uruguayan Comisión Académica de Posgrado (CAP)-Udelar for the Postdoctoral Fellowship (2018-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Amaral-Labat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral-Labat, G., da Silva, E.L., Cuña, A. et al. A Sustainable Carbon Material from Kraft Black Liquor as Nickel-Based Electrocatalyst Support for Ethanol Electro-Oxidation. Waste Biomass Valor 12, 2507–2519 (2021). https://doi.org/10.1007/s12649-020-01201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01201-3

Keywords

Navigation