Skip to main content
Log in

Zirconium–Cerium Oxides Supported on SBA-15 as Catalyst for Shape-Selective Synthesis of Lactic Acid from Glycerol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The conversion of an oleochemical waste i.e. glycerol into lactic acid (LA) using bifunctional catalyst is receiving intensive research attention. The major concern is to achieve a suitable combination of the non-precious active metals with specific roles to achieve a fast and selective reaction. Catalyst with a Ce-to-Zr ratio of 1:2 and supported on SBA-15 at total active metal loadings between 10 and 40 wt% were prepared via a two-sequential-step post-impregnation method. The catalysts were then characterized using nitrogen adsorption–desorption and SEM analyses to elucidate their properties. They were then employed in selective glycerol oxidation reaction carried out at between 240 and 280 °C for up to 3 h to yield LA. The catalytic performance in terms of glycerol conversion and lactic acid yield was successfully correlated with the physicochemical properties of the catalysts. The highest glycerol conversion of 91.2% of glycerol was obtained using 10 wt% of CeZr/SBA-15 at a catalyst loading of 25 wt% with almost 51.4% of corresponding LA yield. It was attributed to the desired shape selectivity effect in the benzylic rearrangement (Cannizzaro reaction) of pyruvaldehyde to suppress by-product formations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdullah, R., Saleh, S.N.M., Embong, K., Abdullah, A.Z.: Recent developments and potential advancement in the kinetics of catalytic oxidation of glycerol. Chem. Eng. Commun. (2019). https://doi.org/10.1080/00986445.2019.1641699

    Article  Google Scholar 

  2. Wang, Y., Xiao, Y., Xiao, G.: Sustainable value-added C3 chemicals from glycerol transformations: aa mini review for heterogeneous catalytic processes. Chinese J. Chem. Eng. 27(7), 1536–1542 (2019). https://doi.org/10.1016/j.cjche.2019.03.001

    Article  Google Scholar 

  3. Feng, Y., Yin, H., Wang, A., Gao, D., Zhu, X., Shen, L., Meng, M.: Selective oxidation of 1,2-propanediol to lactic acid catalyzed by nanosized Mg(OH)2-supported bimetallic Au–Pd catalysts. Appl. Catal. A 482, 49–60 (2014). https://doi.org/10.1016/j.apcata.2014.05.022

    Article  Google Scholar 

  4. Yin, H., Yin, H., Wang, A., Shen, L.: Catalytic conversion of glycerol to lactic acid over graphite-supported nickel nanoparticles and reaction kinetics. J. Ind. Eng. Chem. 57, 226–235 (2018). https://doi.org/10.1016/j.jiec.2017.08.028

    Article  Google Scholar 

  5. Feng, S., Takahashi, K., Miura, H., Shishido, T.: One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions. Fuel Proc. Technol. (2020). https://doi.org/10.1016/j.fuproc.2019.106202

    Article  Google Scholar 

  6. Lakshmanan, P., Upare, P.P., Le, N.T., Hwang, Y.K., Hwang, D.W., Lee, U.H., Kim, H.R., Chang, J.S.: Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid. Appl. Catal. A 468, 260–268 (2013). https://doi.org/10.1016/j.apcata.2013.08.048

    Article  Google Scholar 

  7. Maris, E.P., Davis, R.J.: Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J. Catal. 249, 328–337 (2007). https://doi.org/10.1016/j.jcat.2007.05.008

    Article  Google Scholar 

  8. Maris, E.P., Ketchie, W.C., Murayama, M., Davis, R.J.: Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J. Catal. 251, 281–294 (2007). https://doi.org/10.1016/j.jcat.2007.08.007

    Article  Google Scholar 

  9. Shen, Y., Zhang, S., Li, H., Ren, Y., Liu, H.: Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au–Pt/TiO2 catalysts. Chem. Eur. J. 16, 7368–7371 (2010). https://doi.org/10.1002/chem.201000740

    Article  Google Scholar 

  10. Roy, D., Subramaniam, B., Chaudhari, R.V.: Cu-based catalysts show low temperature activity for glycerol conversion to lactic acid. ACS Catal. 1, 548–551 (2011). https://doi.org/10.1021/cs200080j

    Article  Google Scholar 

  11. Dam, J.T., Kapteijn, F., Djanashvili, K., Hanefeld, U.: Tuning selectivity of Pt/CaCO3 in glycerol hydrogenolysis: a design of experiments approach. Catal. Commun. 13, 1–5 (2011). https://doi.org/10.1016/j.catcom.2011.06.007

    Article  Google Scholar 

  12. Auneau, F., Michel, C., Delbecq, F., Pinel, C., Sautet, P.: Unravelling the mechanism of glycerol hydrogenolysis over rhodium catalyst through combined experimental–theoretical investigations. Chem. Eur. J. 17, 14288–14299 (2011). https://doi.org/10.1002/chem.201101318

    Article  Google Scholar 

  13. Purushothaman, R.K.P., Haveren, J.V., Es, D.S.V., Melián-Cabrera, I., Meeldijk, J.D., Heeres, H.J.: An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl. Catal. B 147, 92–100 (2014). https://doi.org/10.1016/j.apcatb.2013.07.068

    Article  Google Scholar 

  14. Marques, F.L., Oliveira, A.C., Filho, J.M., Rodríguez-Castellón, E., Cavalcante, C.L., Vieira, R.S.: Synthesis of lactic acid from glycerol using a Pd/C catalyst. Fuel Process. Technol. 138, 228–235 (2015). https://doi.org/10.1016/j.fuproc.2015.05.032

    Article  Google Scholar 

  15. Arcanjo, M.R.A., Silva, I.J., Rodríguez-Castellón, E., Infantes-Molina, A., Vieira, R.S.: Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today. 279, 317–326 (2017). https://doi.org/10.1016/j.cattod.2016.02.015

    Article  Google Scholar 

  16. Kaminski, P., Ziolek, M.: Surface and catalytic properties of Ce-, Zr-, Au-, Cu-modified SBA-15. J. Catal. 312, 249–262 (2014). https://doi.org/10.1016/j.jcat.2014.02.005

    Article  Google Scholar 

  17. Escamilla-Perea, L., Nava, R., Pawelec, B., Rosmaninho, M.G., Peza-Ledesma, C.L., Fierro, J.L.G.: SBA-15-supported gold nanoparticles decorated by CeO2: structural characteristics and CO oxidation activity. Appl. Catal. A 381, 42–53 (2010). https://doi.org/10.1016/j.apcata.2010.03.038

    Article  Google Scholar 

  18. Saleh, S.N.M., Yusoff, M.H.M., Abdullah, A.Z.: Caesium salt of tungstophosphoric acid supported on mesoporous SBA-15 catalyst for selective esterification of lauric acid with glycerol to monolaurin. Arab. J. Sci. Eng. 43, 5771–5783 (2017). https://doi.org/10.1007/s13369-017-3009-x

    Article  Google Scholar 

  19. Wang, F.F., Shao, S., Liu, C.L., Xu, C.L., Yang, R.Z., Dong, W.S.: Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution. Chem. Eng. J. 264, 336–343 (2015). https://doi.org/10.1016/j.cej.2014.11.115

    Article  Google Scholar 

  20. Gagea, B.C., Lorgouilloux, Y., Altintas, Y., Jacobs, P.A., Martens, J.A.: Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis. J. Catal. 265, 99–108 (2009). https://doi.org/10.1016/j.jcat.2009.04.017

    Article  Google Scholar 

  21. Hermida, L., Abdullah, A.Z., Mohamed, A.R.: Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst. Chem. Eng. J. 174, 668–676 (2011). https://doi.org/10.1016/j.cej.2011.09.072

    Article  Google Scholar 

  22. Olutoye, M.A., Wong, S.W., Chin, L.H., Amani, H., Asif, M., Hameed, B.H.: Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renew. Energy. 86, 392–398 (2016). https://doi.org/10.1016/j.renene.2015.08.016

    Article  Google Scholar 

  23. Arcanjo, M.R.A., Silva, I.J., Rodríguez-Castellón, E., Infantes-Molina, A., Vieira, R.S.: Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today 279, 317–326 (2017). https://doi.org/10.1016/j.cattod.2016.02.015

    Article  Google Scholar 

  24. Hoo, P.Y., Abdullah, A.Z.: Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chem. Eng. J. 250, 274–287 (2014). https://doi.org/10.1016/j.cej.2014.04.016

    Article  Google Scholar 

  25. Moreira, A.B.F., Bruno, A.M., Souza, M.M.V.M., Manfro, R.L.: Adsorption capability of activated carbon synthesized from coconut shell. Fuel Process. Technol. 144, 170–180 (2016). https://doi.org/10.1016/j.fuproc.2015.12.025

    Article  Google Scholar 

  26. Razali, N., Abdullah, A.Z.: Production of lactic acid from glycerol via chemical conversion using solid catalyst: a review. Appl. Catal. A 543, 234–246 (2017). https://doi.org/10.1016/j.apcata.2017.07.002

    Article  Google Scholar 

  27. Liu, P., Derchi, M., Hensen, E.J.M.: Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl. Catal. B 144, 135–143 (2014). https://doi.org/10.1016/j.apcatb.2013.07.010

    Article  Google Scholar 

  28. Kaskow, I., Decyk, P., Sobczak, I.: The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation. Appl. Surf. Sci. 444, 197–207 (2018). https://doi.org/10.1016/j.apsusc.2018.02.285

    Article  Google Scholar 

  29. Yang, G.Y., Ke, Y.H., Ren, H.F., Liu, C.L., Yang, R.Z., Dong, W.S.: The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts. Chem. Eng. J. 283, 759–767 (2016). https://doi.org/10.1016/j.cej.2015.08.027

    Article  Google Scholar 

  30. Kaminski, P., Ziolek, M., Bokhoven, J.A.V.: Mesoporous cerium–zirconium oxides modified with gold and copper–synthesis, characterization and performance in selective oxidation of glycerol. RSC Adv. 7, 7801–7819 (2017). https://doi.org/10.1039/c6ra27671g

    Article  Google Scholar 

  31. Liu, S.S., Sun, K.Q., Xu, B.Q.: Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base. ACS Catal. 4, 2226–2230 (2014). https://doi.org/10.1021/cs5005568

    Article  Google Scholar 

  32. Rodrigues, A.K.O., Maia, D.L.H., Fernandes, F.A.N.: Production of lactic acid from glycerol by applying an alkaline hydrothermal process using homogeneous catalysts and high glycerol concentration. Braz. J. Chem. Eng. 32, 749–755 (2015). https://doi.org/10.1590/0104-6632.20150323s00003356

    Article  Google Scholar 

  33. Allen, A.E., MacMillan, D.W.C.: Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012). https://doi.org/10.1039/c2sc00907b

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded under the Transdisciplinary Research Grant Scheme (TRGS) (6762001) and the Fundamental Research Grant Scheme (FRGS) (6071366) that were provided by the Ministry of Education of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zuhairi Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, S.N.M., Abdullah, A.Z. Zirconium–Cerium Oxides Supported on SBA-15 as Catalyst for Shape-Selective Synthesis of Lactic Acid from Glycerol. Waste Biomass Valor 12, 2565–2578 (2021). https://doi.org/10.1007/s12649-020-01200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01200-4

Keywords

Navigation